

2017

IMPETUS-VR Documentation

CELLULAR MECANICS LABORATORY

UNIVERSITY OF CONNECTICUT

Table of Contents
Introduction .. 2

Controls ... 2

Toggle Menu .. 2

Move, Rotate, and Scale Simulate .. 2

Menu Select / Grab Particles .. 3

Cycle Menu .. 3

Menus .. 4

Main Menu ... 4

Simulation Menu ... 5

Particle Type Menus ... 6

Code Structure ... 7

FImpetus .. 8

UIModels... 8

Rendering ... 9

Simulator... 9

Motion Controller Pawn ... 9

Introduction
This is the documentation and user guide for IMPETUS-VR. This software enables users to not

only view but to manually interact with their simulations in virtual reality. For a brief overview of

the program, please see the accompanying demonstration video.

Controls

Toggle Menu
The user can hide and show the IMPETUS-VR settings and action menus by pressing the Toggle

Menu button. Menus appear in front and slightly above the left controller. In order to select a menu

option, the user must overlap the red sphere floating slightly in front of the right controller with the

desired menu button and pull the trigger on the back of the right controller. While the sphere

overlaps a menu button it is highlighted. While a menu is active, the controllers cannot be used

to grab or pull particles.

Move, Rotate, and Scale Simulate
These controller buttons allow the user to translate the simulation in virtual reality with the right

controller, rotate it relative to the user with the left controller, or rescale the simulation using both

at once in the virtual reality space. These changes do not affect the simulation itself, rather how

it is displayed in virtual reality.

The simulations are translated, rotated, or scaled only while the controller button is held down.

While this button is held down on just the right controller the Simulation is translated in the same

directions as the controller itself. While this button is held down on just the left controller, the

simulation is rotated about its center by the translation of the left controller. While this button is

held down on both controllers, the simulation is scaled based on the change in distance between

the two controllers, that is, bringing the two controller closer together shrinks the simulation and

brining the two controllers apart expands the simulation.

Menu Select / Grab Particles
The trigger controller button serves three distinct purposes. When a menu is active, this trigger

button can only be used to select a menu option by hovering the menu selection sphere over the

desired menu button and pulling the trigger on the right controller. While a menu is active all other

functions of the trigger button and all function of the left trigger button are disabled.

If the menus are hidden, the trigger buttons can be used to interact with the simulation itself. The

user can “grab” particles inside of the simulation. All particles relatively close to the controllers

(defined as a sphere around the controllers) will be “grabbed” when the trigger button is pressed.

The particles will continue to be “grabbed” by each individual controller while the triggers are held

down, and are released when the trigger is released. The functionality of a “grab” changes

depending on whether the simulation is paused.

If the simulation has been paused, particles will follow the grabbing controller by rotating and

translating to match the controller. If the simulation is not paused, the grabbed particles will

experience a steering force towards the center of the controller. The amplitude of this steering for

is directly proportional to the distance of the particles to the center of the controller in the

simulation space. This acts like a spring between the particles and the controller.

Cycle Menu
This button switches which menu is active when the menus are visible.

Menus
The following menus are available to the users

Main Menu

From the main menu, users can

1. Play/Pause: pause and unpause the simulation

2. Clear: clear the simulation

3. Toggle Wands: hide the controllers

4. Toggle Hints: hide the controller hints

5. Exit: exit the program

Simulation Menu

A number of example simulations are available “out of the box.” These include the follow:

1. Leonard-Jones: a particle simulation based on the Lennard-Jones pair potential in a

canonical ensemble

2. Bilayer: a solvent-free model of a phospholipid bilayer

3. Spectrin: a simulation of the red blood cell plasma membrane skeleton

4. Chemotaxis: a model of the interaction between cranial neural crest and cranial placode

cells during collective cell migration

5. Confocal: a representation of a 102 𝜇𝑚 x 102 𝜇𝑚 x 19 𝜇𝑚 confocal microscopy image of

a kidney mouse section

Particle Type Menus

Each simulation dynamically creates menus to edit the visualization of each kind of particle. Each

individual particle type has a corresponding particle type menu. A sample of each particle is

displayed as part of the menu. Any desired changes only change the sample mesh until the

“Apply” button is pressed, at which point the sample mesh is applied to all particles of the

corresponding type in the simulation. The “reset” button can be used to bring the sample mesh

back to what it represents in the simulation. Using the shape buttons, users can cycle through

different meshes that can be applied. Be aware that in particularly large simulation a mesh with a

high amount of detail (polygons) may cause the program to stutter. The RBG sliders allow the

user to adjust the color of the particle type in terms of a red, green, and blue color selection. The

size sliders adjust the size of each particle type mesh in the 3 dimensions.

Visualizing Custom Volumetric Renders
In order to visualize custom volumetric images, such as those produce in confocal microscopy,

the cross-sectional slices of the image need to placed in the following folder

“…\[IMPETUS-VR directory]\Source\ImpetusVive\UIModels\Confocal\input\ConfocalInputs”

This folder initially contains the mouse kidney volumetric images. These mouse kidney images

should first be removed from this location. The software assumes that you are attempting to

visualize square images thus if your source images are not square add an equally sized black

border on either “short” side to create square images.

You will also need to adjust the input parameter file found one directory above in “\input” called

“param.input” with any basic text editor such as notepad. Be sure not to alter any of the input

keywords, all of which start with [IN] and are case sensitive. If there is a typo in the key words, a

default value will be chosen instead of your input value. Input the desired value on the line directly

following the keyword. Any other inputs within this file besides the keywords and the lines directly

following the keywords are ignored. The following keywords can be set

[IN] slice gap
This value controls the distance between each cross-sectional slice in UE4 units. Setting this

value properly will require you to do some unit conversations. For reference, every cross-section

is displayed as a 100 UE4 unit by 100 UE4 unit plane.

[IN] alpha contrast
This value controls the contrast of the images in terms of only the transparency. The lower the

value below 1, the greater the contrast is increased. Values of around 0.8 are recommended.

[IN] brightness
This value controls the brightness of each slice, where 1 represents its original brightness.

[IN] red amplitude
This value controls the brightness of all red color in each slice before the transparency of each

pixel is calculated. Here 1 represents the original brightness. Setting this value at 0 removes red

from the final render. This value should be set between 0 and 1.

[IN] green amplitude
This value controls the brightness of all green color in each slice before the transparency of each

pixel is calculated. Here 1 represents the original brightness. Setting this value at 0 removes green

from the final render. This value should be set between 0 and 1.

[IN] blue amplitude
This value controls the brightness of all blue color in each slice before the transparency of each

pixel is calculated. Here 1 represents the original brightness. Setting this value at 0 removes blue

from the final render. This value should be set between 0 and 1.

Code Structure
The vast majority of operating IMPETUS-VR involves using IMPETUS. For instructions on

IMPETUS and the associated input files please see the previously published instructions.

In order to customize IMPETUS-VR, we have included with this manual a brief overview of the

organizational structure of the IMPETUS-VR code. As mentioned previously, the visualization of

IMPETUS-VR is powered by UNREAL Engine 4 which uses both C++ and a unique visual

programming language named “Blueprints.” All control inputs and outputs, including the

IMPETUS-VR menus are written in Blueprints, while IMPETUS and the rendering are written in

C++. Specifically, the class FImpetus runs the simulation in a thread parallel to the rendering,

while the class Simulator and its Blueprints child class BPSimulator read the data generated

and manipulated by FImpetus and visualize it. When the user interacts and manipulates the

simulation or its visualization, the user inputs are interpreted by the MotionControllerPawn and

forwarded to the Simulator. If the user interaction was with the simulation itself, such as movie

particles or applying a steering force, the Simulator class passes the user inputs on to the

FImpetus class.

FImpetus
The call to begin the static FImpetus thread is made by the Simulator class when a new

simulation is loaded. When the call is made a new instance of FImpetus first checks that the

system is capable of multithreading and whether an instance of FImpetus already exists. Once

the new thread confirms this, the simulation is initialized by matching the input simulation ID

integer with the appropriate UIModel and running the appropriate initialization file. Once the

simulation is ready, FImpetus enters a paused state and waits for the user to unpause the

simulation and the Simulator reads the data generated by FImpetus and the UIModel in order

to visualize the simulation.

UIModels
Unreal-IMPETUS model (UIModel), is a base IMPETUS-VR class that is used to create

simulation models interfacing Unreal engine and IMPETUS. The purpose of this class is to allow

users to have an easy way to generate simulation models without needing to modify the source

code. Upon generation of the FImpetus object, a pointer of UIModel is also created, this pointer

contains no simulation models. In order to convert it into a simulation, users need to write or

download a child model class. The child model class is the C++ class that contains the whole

simulations and is created as a child class of UIModel. In order to convert UIModel to a full

functioning simulation, the child model class needs to override only 3 functions from the original

UIModel:

1. Initiation: Initial configurations and parameters of the simulations

2. Iteration: IMPETUS MD functions (e.g., the leapfrog integration algorithm, the Lennard-

Jones potential)

3. Post-Iteration: System adjusting functions such as thermostats and barostats, and particle

and system property recorders (e.g., positions, velocities, mean squared displacement)

For more information on the UIModel class and an example of implementation, please refer to

the generic UIModel file, GenericUIModel.h, as well as the UIModels bundled “out of the box”

with IMPETUS-VR.

http://www.engr.uconn.edu/~gelyko/impetus/documentation.html

Rendering
The visualization scene consists of the user tools, the simulation bounds, and the contents of the

simulation itself. The user’s controller representations match the physical size and location of the

real world Vive controllers. These are coded in the Blueprints MotionControllerPawn and

BPMotionController. The MotionControllerPawn also spawns and handles all menus, which

inherit from the base class MenuBase. The visualization itself is handled by the instance of the

BPSimulator class that is in the scene. The BPSimulator class inherits from the Simulator. All

visualization is done in the C++ code of Simulator, and the child class BPSimulator itself is only

responsible for aligning the Simulation bounds whenever a new simulation is loaded.

Simulator
The Simulator class is responsible for launching an instance of FImpetus, generating the

visualization of each simulation, updating the visualization whenever the simulation is updated,

and shutting down the FImpetus thread the user loads a new simulation, clears the simulation,

or exits the program. This class initializes and retains the pointers to the Instanced Static Mesh

Components (ISMCs) that are actively rendered by Unreal. The ISMCs are an efficient way to

visualize many objects that have the same shape and color, but are different sizes, at different

locations, and have different orientations. The Simulator class attempts to visualize three

simulation components of IMPETUS, the individual particles, the “edges” that can connect some

particles, and any three dimensional vector fields present in the simulation. The Simulator will

visualize any number of different types of these components. All types of particles are stored in

an array of a simple class called UParticleGroup. This array is called ArrayofParticleGroups. Each

ParticleGroup instance contains the pointer to the appropriate Unreal ISMC, and some basic

information about the particles, such as their world size, color, and mesh. The UParticleGroup

class also contains an array of the class UParticle, called ParticleList. Each UParticle has a pointer

to the corresponding IMPETUS particle as well as some basic (though in certain cases

incomplete) methods to convert between the simulation coordinates and the visualization

coordinates. In the same way, Simulator also contains the arrays ArrayofMDEdges and

ArrayofVectorFields of the classes UMDEdgeGroup and UMDVectorFieldGroup respectively.

These are organized in much the same way. Every rendered frame, Simulator checks to make

sure that FImpetus is still a thread that is running as well as checks whether FImpetus has raised

the “RenderFlag” Boolean signaling Simulator to update the visualization. If the flag is raised,

Simulator updates the visualization and resets the flag. At the time of writing, FImpetus raises

this flag (sets the Boolean to true) every time it computes a time step. For more information on

the individual functions and components of the Simulator class, refer to Simulator.cpp and

Simulator.h and the comments therein.

Motion Controller Pawn
All inputs and outputs, including the menus are written in the Blueprints language and are part of

the MotionControllerPawn instance in the scene. This class is responsible for spawning the

representations of the controllers and updating their positions and orientations, managing the

player’s camera and perspective, and handling all user button presses. New menus must be

introduced in the Blueprints such that they are added to the array of menus and inherit from the

MenuBase Blueprints class.

	Introduction
	Controls
	Toggle Menu
	Move, Rotate, and Scale Simulate
	Menu Select / Grab Particles
	Cycle Menu

	Menus
	Main Menu
	Simulation Menu
	Particle Type Menus

	Visualizing Custom Volumetric Renders
	[IN] slice gap
	[IN] alpha contrast
	[IN] brightness
	[IN] red amplitude
	[IN] green amplitude
	[IN] blue amplitude

	Code Structure
	FImpetus
	UIModels

	Rendering
	Simulator
	Motion Controller Pawn

