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IMPETUS – Interactive MultiPhysics Simulation Envir onment 

 

Tutorial 0: Using the Tutorial 

The tutorial files are available at http://engr.uconn.edu/~gelyko/impetus.html. The provided zip file 

includes the library for the simulating engine, the tutorial simulation files, main.cpp, and a makefile. It is 

recommended that users compile the program using OpenMPI as other compilers are not guaranteed to 

work.  

 

Selecting the Tutorial Files: 

The tutorial demonstrates how to build three different types of simulations: a basic molecular dynamics 

simulation using “CellSpace” MID, diffusion in a continuum field using “InteractiveField” MID, 

and a chemotaxis model where particles obey to particle dynamics equations and at the same time can 

detect the concentration continuum field by coupling a “CellSpace” and an “InteractiveField”. 

All tutorial files are located in the folder named “Tutorials”. To access different tutorials, adjust the 

included header file in main.cpp. Additional instructions are shown in the main.cpp file. There are four 

tutorial files: 

• 1a) Simple NVE molecular dynamics simulation: 

Tutorials/tutorialSimpleMD/simple.h 

• 1b) NVE molecular dynamics simulation of a liquid: 

Tutorials/tutorialSimpleMD/liquid.h 

• 2) Solving the diffusion equation with the continuum field  

Tutorials/tutorialHeat/heat.h 

• 3) Simulating Chemotaxis 

Tutorials/tutorialChemotaxis/chemotaxis.h 

 

  



Compiling the Simulation: 

We provide a makefile to compile the simulation. Confirm that the programs 'make' and OpenMPI are 

installed in your system. The user is responsible for providing the path to the OpenMPI compiler in the 

Makefile. If the IMPETUS library is not in the same folder, the user is also required to change the path of 

the IMPETUS library to the correct location. 

• To compile the program, use the command: 

  make 

• Optionally, the user can clear up the object files by using make clean before make: 

  make clean 

  make 

If the user is planning to use an MPI "machinefile", please modify the file named nodefile accordingly. 

After compilation, the command to run the program should look similar to: 

 /home/shared/openmpi/bin/mpirun -n 8 -machinefile nodefile bin/impetus-

run.exe 

 

 

  



Tutorial 1: Creating a simple Molecular Dynamics Si mulation 

1.1 Introduction  

Here, we provide instructions on how to create a simple Molecular Dynamics simulation. Users will be 

running (i) an NVE simulation of 8000 particles interacting via a simple spring potential, and (ii) a liquid 

simulation using the LJ potential. In addition, the tutorial provides instructions on how to record the 

mean square displacement and compute the radial distribution function. 

• The files for these examples are located in: 

  Tutorials/tutorialSimpleMD/ 

• To include the header for a simple molecular dynamics simulations insert the following 
line in main.cpp 

  #include "../Tutorials/tutorialSimpleMD/simple.h" 

 

1.2 The Parameters Object 

The C++ IMPETUS object "Parameters" is the core of the simulations. The purpose of the 

“Parameters” is to store all the parameter variables used in a simulation. All MIDs and many other 

functions will refer to the pointer of “Parameters” to obtain simulation variables. It can be constructed 

with or without using an input file. For the scope of this tutorial, we will construct it using an input file. 

The input argument for constructing a "Parameters" object is the MPI_Comm object, commonly named 

as the global variable: MPI_COMM_WORLD. For details, please refer to the online application program 

interface (API) http://engr.uconn.edu/~gelyko/impetus.html. 

Some of the variables in the "Parameters" object are imperative to construct the simulation. Such 

mandatory parameters are: 

• Processor division of the simulation. For example, to divide the simulation to 8 
processes in a 2x2x2 partition, the user should assign the value of 2 to each of the 
following "Parameters" variables: 

int gridinfo->proc.np[3] 

• The user is required to assign the lower and upper coordinates of the total simulation 
box: 

  double gridinfo->world.lo[3] 

double gridinfo->world.hi[3] 

Some of the parameters are optional. However, the use is strongly encouraged to assign a value to 

them. These parameters are: 



• Time scale: 

  double delta_t 

• Number of steps for the simulation: 

  int end_step 

The optional parameters that are required by some commonly used functions are: 

• The desired temperature of the simulation which is required for thermostats: 

  double desired_temperature 

• The atomeye cfg printing frequency for cell space, continuum space, and network space: 

  int cell_print_interval 

  int cont_print_interval 

  int net_print_interval  

• The number of “GlobalNetwork”, “CellSpace”, “InteractiveField” that the user 
intend to use in the program: 

  int n_net 

  int n_cell 

  int n_cont 

 

  



An example of how to create the “Parameters” object using an input file is as follows: 

 

 

An example of param.input is as follows: 

 

 

  

[IN] delta_t 
0.01 
 
[IN] end_step 
1000 
 
[IN] cell_print_interval 
100 
 
[IN] cont_print_interval 
100 
 
[IN] proc.np 
2 2 2 
 
[IN] world.lo 
0 0 0 
 
[IN] world.hi 
20 20 20 
 
[IN] desired_temperature 
1 
 
[IN] number of networks 
0 
 
[IN] number of cell list space 
1 
 
[IN] number of continuum space 
0 
 

/// Initiating and declaring the param object: 
vamde::Parameters * param = new vamde::Parameters(MPI_COMM_WORLD); 
  
 
/// Read in the values from the param.input, please modify the path 
accordingly. 
param->readinput("Tutorials/tutorialSimpleMD/input/param.input" ); 



Common “Parameters” Functions: 

In addition, the “Parameters” object provides functions that are commonly used in simulations.  

• Getting the rank number of current simulation process: 

  int rank() 

• Getting the simulation time: 

  double time() 

• Getting the simulation time step 

  int step() 

• Advancing the simulation clock by one step 

  void clock->advance(); 

 

1.3 The "CellSpace" Object 

The “CellSpace” object is the short-range particle dynamic MID built using LCM (refer to Online 

Methods). It handles all particle dynamics functions. The “Parameters” object is required to create the 

“CellSpace”. An example on how to create the “Parameters” object using an input file is given 

below: 

  

Mandatory parameters required for “CellSpace” to be constructed: 

• The minimum_cell_size variable also referred to as rcut in the input file is the 
minimum size of a cell in the LCM. Note that the space is automatically divided up 
evenly to all cells so the resulting size of the cells will be at least as large as the provided 
minimum_cell_size. 

  double minimum_cell_size 

• The variables “sigma” and “mass” represent the size and mass of the particles in the 
“CellSpace”, respectively. They are used in the molecular dynamics potentials which 
are provided with the library. However, they are not absolutely necessary if users plan to 
build their own potential functions: 

  double sigma; 

 vamde::CellSpace * s0; 
 s0 = new vamde::CellSpace("path/to/cell0.input",param); 

 



  double mass; 

• Some functions, such as printing of cfg files requires the following output path variable: 

  char *output_directory_name; 

 

“CellSpace” has functions that automatically generate simple initial configurations for particles but 

users can build their own initial configurations by using the “createParticle()” function. This is 

discussed in the online API: 

• “CellSpace” automatically provides a uniformly distributed set of particles as an initial 
configuration. The following variables describe the distribution: 

int particle_distribution[3]; 

• Users can assign two types of initial velocity distribution. Set 
“velocity_distribution_type” to 0 to assign the same initial velocity to all particles 
and to 1 to assign random uniformly distributed particle velocities ranging between a 
provided minimum and maximum value: 

  int velocity_distribution_type ; 

• The 3 components of the constant initial velocity distribution are assigned to: 

  double orderly_velocity_distribution [3];  

• The minimum and maximum value of the uniform velocity distribution are assigned to: 

  double uniformly_randomly_velocity_distribution_lower[3]; 

  double uniformly_randomly_velocity_distribution_upper[3]; 

  



An example of cell0.input is as follows: 

 

 

 

  

[IN] rcut 
1.122462048309373 
 
[IN] sigma 
1 
 
[IN] mass 
1 
 
[IN] particle distribution 
20 20 20 
 
% velocity distribution type: 0 for orderly, 1 for uniformly random. 
[IN] velocity distribution type  
0 
 
[IN] orderly velocity distribution  
0.3 0.3 0.3 
 
[IN] uniformly randomly velocity distribution lower 
-1 -1 -1 
 
[IN] uniformly randomly velocity distribution upper 
1 1 1 
 
[IN] output directory name 
Tutorials/tutorialSimpleMD/output/Cell_outputs/cell0/ 

 



Common "CellSpace" Functions 

“CellSpace” provides a large number of functions for users to create simulations. The commonly used 

functions are the following:  

• “moveParticles()” is used for moving particles across processors. Particles that are 
not within the simulation box of the current processor are moved to the neighbor 
processors. 

  void moveParticles(); 

• “move_particles_to_the_correct_cells()” is used to move particles to the correct 
cell in the cell list according to their positions within the same processor. This is 
recommend to use after integration and before moving particles across processors with 
“moveParticles()” 

  void move_particles_to_the_correct_cells(); 

• “copyParticles()” is used for copying particles that are on the borders of a processor 
to the shell layer of adjacent processors as pseudo particles for pair computations. This 
is required to perform pair-potential calculations. 

  void copyParticles(); 

• “deleteBorders()” is used to delete pseudo particles in shell layers. It is recommended 
to be used before performing “move_particles_to_the_correct_cells()” to avoid 
the deletions of particles that are moved to the shell layer in preparation for 
“moveParticles()” 

  void deleteBorders(); 

• “cfgwriter->print()” is used to print .cfg files for visualization. The files are printed to 
the provided output directory name. Please refer to the online API for complete 
instructions on how to visualize these files. 

  void cfgwriter->print(); 

  



1.4 Using Iteration Classes 

The program provides a very organized way for users to implement potentials and functions as 

subclasses to one of the “iteration” base classes. Two examples are getPartList and getCellList. 

The users create function objects out of these classes. The input arguments for these objects are the 

pointers of the “CellSpace” of the particles that the user iterates. More “iteration” classes are 

available in IMPETUS. 

The “getPartList” class is commonly used to program single action to particles. The “getCellList” 

is commonly used to program pair actions between particles and their neighbors in the cell list. The 

following is an example on how to use “getPartList” to set the force values of all particles to zero in 

preparation of new calculations. The actions are programmed in the function “action(Particle 

*i)”:  

 

 

Examples on how to initiate and use the functions defined above: 

 ZeroForce1 zeroforce(s0); 

 zeroforce.apply(); 

class ZeroForce1 : public getPartList { 
 public: 
 ZeroForce1(vamde::CellSpace *_s) : getPartList(_s) {} 
  void action(Particle *i)  { 
   for (int d=0; d<DIM; d++) { 
    i->F[d] =0; 
   } 
  } 
}; 



Next, we show an example on how to use “getCellList” to create a simple spring potential between 

pairs of neighboring particles. The actions are programmed in “action(Particle *i, Particle 

*j)”. Note that users only need to modify i and not j, and the loop will provide both the i<->j 

interaction and the j<->i interaction: 

 

Examples on how to initiate and use the functions defined above: 

 Spring1 spring(s0); 

 spring.apply(); 

 

 

class Spring1 : public getCellList { 
 public: 
 Spring1(vamde::CellSpace *_s) : getCellList(_s) {} 
   
 void action(Particle *i, Particle *j) { 
  real sigma = 1.0; 
  real epsilon = 5.0; 
  real r = 0.0; 
  for (int d=0; d<DIM; d++) 
   r += sqr(j->x[d] - i->x[d]); 
   real dx = sqrt(r); 
   if (dx <= 1.1) { 
    real f =  epsilon * (dx - sigma) ; 
    for (int d=0; d<DIM; d++){ 
     i->F[d] += f * (j->x[d] - i->x[d]) ; 
    } 
   } 
  } 
}; 

 



The following example illustrates how to employ “getPartList” in order to implement a slightly more 

complex function. Here, we use the leapfrog algorithm. The “LeapFrog1” class can have its own 

variable and functions (e.g  int PART , void step(int _step) ). Note that the “CellSpace” was 

constructed using “Parameters”, therefore users can call the “Parameters” object from 

“CellSpace”.  

 

Examples on initiating and using these functions: 

 LeapFrog1 leapfrog(s0); 

 leapfrog.step(1);   

 leapfrog.step(2); 

 

1.5 Creating a Simple Molecular Dynamics Simulation  

By combining what we discussed up to this point in this tutorial, we can build simple molecular dynamics 

simulations using the provided library: 

 

 

class LeapFrog1: public getPartList { 
 public: 
 LeapFrog1(vamde::CellSpace *_s) : getPartList(_s) { 
   PART = 0; 
   dt =_s->param-> delta_t; 
  } 
  void step(int _step){ 
   PART = _step;  
   apply(); 
   PART = 0; 
  } 
 private: 
  int PART; 
  double dt; 
  void action(Particle *i)  { 
   for (int d=0; d<DIM; d++) { 
    if (PART == 1) { 
     i->v[d] = i->v[d] + (0.5* dt * i->F[d]/i->m); 
     i->x[d] = i->x[d] + ( dt * i->v[d] ); 
    } else { 
     i->v[d] = i->v[d] + (0.5* dt * i->F[d]/i->m); 
    } 
   } 
  } 
}; 

 



 int main(int argc, char *argv[]) { 
  
 MPI_Init(&argc, &argv); 
 
 /// Creating Parameters object 
 vamde::Parameters * param = new vamde::Parameters(MPI_COMM_WORLD); 
 param->readinput("workspace/noinput_20160503/input/param.input" ); 
  
 /// Creating CellSpace 
 vamde::CellSpace * s0; 
 s0 = new 
vamde::CellSpace("workspace/noinput_20160503/input/cell0.input",param); 
  
 Spring1 spring(s0); 
 LenardJones1 lenardjones(s0); 
 ZeroForce1 zeroforce(s0); 
 LeapFrog1 leapfrog(s0); 
  
 /// print Cfgs 
 s0->cfgwriter->print(); 
 while (param->step() < param->end_step) { 
   
  /// Advance the clock by one step 
  param->clock->advance(); 
 
  /// LeapFrog step 1 
  leapfrog.step(1);   
 
  /// delete shell particles 
  s0->deleteBorders(); 
  /// move particles to new cells after integration before moving 
interprocessor 
  s0->move_particles_to_the_correct_cells();  
  /// move particles across processors. 
  s0->moveParticles(); 
  /// copy new ghost particles 
  s0->copyParticles(); 
   
  /// Set all forces to zero 
  zeroforce.apply(); 
   
  /// Apply spring pair potential 
  spring.apply(); 
  //~ lenardjones.apply(); 
   
  /// LeapFrog step 2 
  leapfrog.step(2); 
 
  /// print Cfgs 
  s0->cfgwriter->print(); 
   
 } 
} 

 



1.5.1 Visualization with Atomeye 

To view particle configurations, we use the visualizer Atomeye. We provide functions to print out the 

particle coordinate files. In addition, we also provide methods to convert these files to configuration 

files for the Atomeye. For more information, please visit http://li.mit.edu/Archive/Graphics/A/ .  

• The coordinates of the particles are saved in the “output_directory_name” variable 
that is assigned to the “CellSpace” object. For example,  

  [IN] output directory name 

  Tutorials/tutorialSimpleMD/output/Cell_outputs/cell0/ 

• To generate the configuration file, go to the directory input above and run the provided 
.m executable script to convert the output coordinate files to Atomeye format. Users 
have the option to run the script in Octave, FreeMat, or Matlab. The name of the script 
is: 

  mergeCellCfgOctave2016.m  

• The converted file is saved in the folder named Cfg/ 

 

Note that users can use the provided class template for coordinate printing to create their own 

functions to print out files for other visualizers. User can also write their own scripts to convert the 

coordinate files to the appropriate format of their visualizer.  



1.5.2 Building a Lennard-Jones (LJ) Liquid Model 

This tutorial demonstrates how to build the LJ liquid simulation. 

• Include the header for the simple molecular dynamics simulation by putting this line in 
main.cpp 

  #include "../Tutorials/tutorialSimpleMD/liquid.h" 

• Note that the main difference between the liquid simulation and the simple molecular 
dynamics simulation discussed above is the use of the LJ potential instead of the spring 
potential. LJ potential (expression) is declared as follows: 

  LennardJones1 lennardjones(s0); 

• The LJ function provided in this tutorial allows users to apply, by default, the entire LJ 
potential or only the repulsive part. When the repulsive LJ potential is implemented, 
make sure that the rcut in the input file is at least 1.12246 and then use the following 
function:  

“lennardjones.setRepulsive()”  

• To apply the pair potential to all close-range particles in s0, set the rcut to at least 2.5 
and apply the following function:  
 

“lennardjones.setAttractive()”; 
 

• To use LJ, insert the following:  

“lennardjones.apply()”; 

 

 

In addition, here we discuss two postprocessing functions: the measurement of (i) the radial distribution 

function (RDF) and (ii) the mean square displacement (MSD) distribution (Supplementary Note 1). For 

RDF, build the “CellSpace” with an rcut of 4.0. The codes for MSD and RDF are not discussed in the 

Supplementary Information document but are provided in the online tutorial file. To construct and use 

of the functions insert: 

 MSD1 msd(s0); 

 msd.print(); 

  

 RDF1 rdf(s0); 

 rdf.print(); 

 



For this tutorial, the files are saved in: 

 Tutorials/tutorialSimpleMD/output/MSD/   

 Tutorials/tutorialSimpleMD/output/RDF/   

 

The user can view the plots using the provided .m Octave executable function in 

 Tutorials/tutorialSimpleMD/output/plotMSDandRDF.m 

 

Results for a very similar simulation but in NVT ensemble is shown in (Supplementary Note 1, 

Supplementary Figure 1).  

  



Tutorial 2 : Solving the Diffusion equation using I nteractive Field 

2.1 Introduction 

This tutorial will guide users to create a simple simulation to solve the diffusion equation 

( ) ( )2, ,C t t D C t∂ ∂ = ∇r r  using the “InteractiveField” MID. Where ( ),C tr  is the concentration 

and D  is the constant diffusion coefficient, by using the continuum field component of the program.  

• The tutorial is located in:  

Tutorials/tutorialHeat/ 

• For a diffusion simulation, insert the line below in the main.cpp: 

  #include "../Tutorials/tutorialHeat/heat.h" 

 

2.2. The “InteractiveField” Object 

The “InteractiveField” object is the discretized physical space defined by a grid of nodes. 
Field equations can be solved numerically at the nodes. Here, we follow the explicit finite 
difference method. The “Parameters” object is required to create the “InteractiveField” 
object. The following example shows how to create the object using an input file: 

 vamde::InteractiveField * c0;  

 vamde::InteractiveField::Cinit continit; 

 continit.readinput("Tutorials/tutorialHeat/input/cont0.input"); 

 c0 = new vamde::InteractiveField(continit,param); 

The required parameters for constructing the “InteractiveField” are  

• Minimum number of total nodes on each axis: nx, ny, nz. The simulation engine will 
divide the continuum to the processors and rounding up so that the number of nodes is 
the same in every processor. Therefore the resulting number of nx, ny and nz may be 
slightly higher than the assigned value.  

 int nx, ny, nz; 

• Ghost layer is the size of the shell layer used in processor communication 

 int ghost_layer; 

 



• A printing path is required for the generated .cfg configuration files but it is not required 
to construct the field: 

 char *output_directory_name; 

An example for an input file cell0.input is shown below: 

 

 

Common InteractiveField Functions:  

• The diffusivity can be adjusted: 

  c0->diffusivity = 0.05; 

• Several boundary conditions can be used. Examples on how to use sink/source ( ),C tr

ktrC =),(  and insulators 0),( =tr
dt

dC
 as boundary conditions are as follows: 

  c0->setAllGlobalBoundarySink(); 

  c0->setAllGlobalBoundaryInsulated() 

• Users can set a concentration value “concentration_val”  to a certain location x0, 
y0, z0 as follow: 

  c0->setConcentration( x , y , z , concentration_val); 

• To print configuration .cfg files to a provided output directory name, we use the function: 

  c0->cfgwriter->print(); 

• To copy the nodes of the border of one processor to the shell layer of its adjacent 
processor as pseudo nodes, we use the function: 

  c0->copyParticles(); 

• This function will specifically integrate the parabolic equation. 

  c0->IterateParabolicPDE(); 

[IN] nx ny nz 
120 120 120 
 
[IN] ghost_layer 
1 
 
[IN] output directory name 
Tutorials/tutorialHeat/output/Cont_outputs/cont0/ 



Creating a Simulation 

The following example shows how to use the functions defined above along with what we discussed in 

(Supplementary Software 2) to build a simple diffusion simulation.  

 

 

Results are shown in (Supplementary Note 5, Supplementary Figure 5).  

void runSimulation(vamde::Parameters * param)  { 
  
 vamde::TimeKeeper * tk; 
 tk = new vamde::TimeKeeper(param); 
  
 /// parameters:  
 double delta_t = param-> delta_t; 
 double end_step = param-> end_step; 
 double & t = param->clock->t; 
 int & step = param->clock->step; 
 /// Initiate clock 
 param->clock->set_step(0); 
  
 vamde::InteractiveField * c0; 
 vamde::InteractiveField::Cinit continit; 
 continit.readinput("Tutorials/tutorialHeat/input/cont0.input"); 
 c0 = new vamde::InteractiveField(continit,param); 
 c0->diffusivity = 0.05; 
 
 double x_mid = (param->gridinfo->world.lo[0] + param->gridinfo-
>world.hi[0]) /2; 
 double y_mid = (param->gridinfo->world.lo[1] + param->gridinfo-
>world.hi[1]) /2; 
 double z_mid = (param->gridinfo->world.lo[2] + param->gridinfo-
>world.hi[2]) /2; 
 
 c0->setConcentration(x_mid,y_mid,z_mid,10 ); 
 c0->setAllGlobalBoundarySink(); 
 c0->cfgwriter->print(); 
  
 while (step < end_step) { 
   
  /// Print Runtime progress 
  tk->print_progress(10); 
  /// Advace the clock by one step 
  param->clock->advance(); 
 
  c0->copyParticles(); 
  c0->IterateParabolicPDE(); 
  c0->cfgwriter->print(); 
   
 } 
} 

 



Tutorial 3: Simple Chemotaxis Model 

3.1 Introduction 

This section of the tutorial will guide the users to couple the “CellSpace” MID with the 
“InteractiveField” MID into one simulation. We will demonstrate a numerical model that 
simulates chemotaxis. Particles from “CellSpace” will detect the concentration field generated 
by the “InteractiveField” and migrate along the maximum concentration gradient. 

This section of the tutorial is located in: 

 Tutorials/tutorialChemotaxis/ 

Include the header for the simple molecular dynamics simulation by inserting the following line in 

main.cpp 

 #include "../Tutorials/tutorialChemotaxis/chemotaxis.h" 

 

3.2 More InteractiveField Functions 

• To get the concentration ( ),C tr  at a certain coordinate x0, y0, z0,the user should 

use: 

 double concentration =  c -> getConcentration(x0, y0, z0); 

• To get the gradient of the concentration ( ),C t∇ r  at a certain coordinate x0, y0, z0, 

the user should use: 

 vec3 gradient = c -> getGradient(x0, y0, z0); 

 

3.3 Building a Cross-interactive Function using “ge tPartList”:  

The function “getPartList” will use the coordinate of the particles in the “CellSpace” to acquire 

the gradient vector of the diffusion. The particles will follow this gradient to migrate towards the highest 

concentration point.  

 



 

 

• The function is called as: 

  Migration_tutorial mg0(s0, c0); 

• It is used as: 

  mg0.apply(); 

  

class Migration_tutorial : public getPartList { 
  
 public: 
  double threshold; 
  double f; 
        Migration_tutorial(vamde::CellSpace *_s, vamde::InteractiveField * 
_c) : getPartList(_s) , c(_c){ 
   threshold = 1 ; 
   f =  0.25; 
  } 
 private: 
  vamde::InteractiveField  * c; 
   
  void action(Particle *i){ 
   double concentration =  c -> getConcentration(i->x[0],i-
>x[1],i->x[2]); 
   vec3 gradient = c -> getGradient(i->x[0],i->x[1],i-
>x[2]); 
   double dr[3]; 
   double rr = 0; 
   for (int d=0; d<DIM; d++) { 
    dr[d] = gradient.r[d]; 
    rr += dr[d] * dr[d]; 
   } 
   double x =sqrt(rr);  
   double drhat[3]; 
   for (int d=0; d<DIM; d++) { 
    drhat[d] = dr[d] / x; 
   } 
   if (x > threshold) { 
    for (int d=0; d<DIM; d++){ 
     i->F[d] += f * drhat[d]; 
    } 
   } 
  } 
}; 

 



3.3 Creating Sinks and Sources 

In this example, we introduce a sink and a source in the concentration field. The source is simulated by 

constantly setting the concentration at the point where the source is located at a specific value. Here, 

we use the value of 10. The sink is simulated by constantly setting the concentration to -10). The two 

functions are placed in a “while” loop.  

 double x_mid = (param->gridinfo->world.lo[0] + param->gridinfo-

>world.hi[0]) /2; 

 double y_mid = (param->gridinfo->world.lo[1] + param->gridinfo-

>world.hi[1]) /2; 

 double z_mid = (param->gridinfo->world.lo[2] + param->gridinfo-

>world.hi[2]) /2; 

 c0->setConcentration(x_mid+0.4*x_mid,y_mid,z_mid,10 ); 

 c0->setConcentration(x_mid-0.4*x_mid,y_mid,z_mid,-10 ); 

 

 

3.4 Creating a Simulation 

By combining everything that we discussed so far, we can create the following chemotaxis model: 



 

void runSimulation(vamde::Parameters * param)  { 
  
 vamde::TimeKeeper * tk; 
 tk = new vamde::TimeKeeper(param); 
  
 /// parameters:  
 double delta_t = param-> delta_t; 
 double end_step = param-> end_step; 
 double & t = param->clock->t; 
 int & step = param->clock->step; 
  
 /// Initiate clock 
 param->clock->set_step(0); 
  
 vamde::CellSpace ** s; 
 s = new vamde::CellSpace  * [param->n_cell]; 
 s[0] = new 
vamde::CellSpace("Tutorials/tutorial3chemotaxis/input/cell0.input",param); 
 s[0]->cfgwriter->set_atom_name( "Cs"); 
  
 /// Reset the unique ID of all particles 
 for (int n=0; n<param->n_cell; n++) { 
  s[n]->refreshCell(); 
 } 
  
 vamde::InteractiveField ** c; 
 c = new vamde::InteractiveField  * [param->n_cont]; 
  
 vamde::InteractiveField::Cinit continit; 
 continit.readinput("Tutorials/tutorial3chemotaxis/input/cont0.input")
; 
 c[0] = new vamde::InteractiveField(continit,param); 
 c[0]->diffusivity = 0.1; 
  
 double x_mid = (param->gridinfo->world.lo[0] + param->gridinfo-
>world.hi[0]) /2; 
 double y_mid = (param->gridinfo->world.lo[1] + param->gridinfo-
>world.hi[1]) /2; 
 double z_mid = (param->gridinfo->world.lo[2] + param->gridinfo-
>world.hi[2]) /2; 
 
 c[0]->setConcentration(x_mid+0.4*x_mid,y_mid,z_mid, 10 ); 
 c[0]->setConcentration(x_mid-0.4*x_mid,y_mid,z_mid,-10 ); 
 c[0]->setAllGlobalBoundarySink(); 
  
 for (int n=0; n<param->n_cont; n++) { 
  c[n]->cfgwriter->print(); 
 } 
  
 LenardJones3 lenardjones(s,param->n_cell ); 
 ZeroForce3 zeroforce(s,param->n_cell); 
 LeapFrog3 leapfrog(s,param->n_cell); 
 Viscosity3 viscosity(s,param->n_cell); 

 



 

 for (int n=0; n<param->n_cell; n++) { 
  s[n]->deleteBorders(); 
  s[n]->cfgwriter->print(); 
 } 
  
 while (step < end_step) { 
  /// Print Runtime progress 
  tk->print_progress(10); 
  /// Advace the clock by one step 
  param->clock->advance(); 
  /// LeapFrog step 1 
  leapfrog.step(1); 
  for (int n=0; n<param->n_cell; n++) { 
   /// delete ghost particles 
   s[n]->deleteBorders(); 
   /// move particles to new cells after integration before 
moving interprocessor 
   s[n]->move_particles_to_the_correct_cells();  
   /// move particles across processors. 
   s[n]->moveParticles(); 
   /// copy new ghost particles 
   s[n]->copyParticles(); 
  } 
  /// Set All forces to zero 
  zeroforce.loopLocalParticles(); 
 
  /// Apply Lenard Jones Pair potential 
  lenardjones.loopNeighbors(); 
   
  viscosity.loopLocalParticles(); 
  /// LeapFrog step 2 
  leapfrog.step(2); 
 
  /// print Cfgs 
  for (int n=0; n<param->n_cell; n++) { 
   s[n]->cfgwriter->print(); 
  } 
  for (int n=0; n<param->n_cont; n++) { 
   c[n]->copyParticles(); 
  } 
  for (int n=0; n<param->n_cont; n++) { 
   c[n]->Iterate(); 
  } 
   
  /// continuum 
  c[0]->cfgwriter->print(); 
  c[0]->setConcentration(x_mid+0.4*x_mid,y_mid,z_mid,  10 ); 
  c[0]->setConcentration(x_mid-0.4*x_mid,y_mid,z_mid, -10 ); 
   
  Migration_tutorial mg0(s[0], c[0]); 
  mg0.apply(); 
 } 
  
} 

 


