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Rayleigh Waves Generated by a
Thermal Source: A Three-
Dimensional Transient
Thermoelasticity Solution
A three-dimensional transient thermoelastic solution is obtained for Rayleigh-type di
bances propagating on the surface of a half-space. These surface waves are genera
either a buried or surface thermal source, which has the form of a concentrated hea
applied impulsively. In an effort to model this problem as realistically as possible,
half-space material is taken to respond according to Biot’s fully coupled thermoelast
The problem has relevance to situations involving heat generation due to: (i) laser a
(impulsive electromagnetic radiation) on a surface target, (ii) underground nuclear ac
ity, and (iii) friction developed during underground fault motions related to seismic
tivity. The problem was attacked with unilateral and double bilateral Laplace transfor
which suppress, respectively, the time variable and two of the space variables. The
leigh wave contribution is obtained as a closed-form expression by utilizing asympt
complex-variable theory and certain results for Bessel functions. The dependence
normal displacement associated with the Rayleigh wave upon the distance from the
epicenter and the distance from the wavefront is also determined.
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1 Introduction

A class of interesting problems of thermomechanical wave m
tions arises from the action of a thermal source in a conduc
and deformable body. The source can be situated either on
surface or inside the medium~buried source!. Typical problems of
this class involve:~i! laser action~impulsive electromagnetic ra
diation! on a surface target~see e.g. Morland@1#, Sve and Mik-
lowitz @2#, Bechtel@3#, Hetnarski and Ignaczak@4#, and Royer and
Chenu@5#!, ~ii ! underground nuclear activity~see e.g., Bullen and
Bolt @6#!, and ~iii ! friction developed during underground fau
motions related to seismic activity~see e.g., Kanamori et al.@7#!.
In many cases, these problems can be viewed as a th
dimensional~3D! situation involving a thermoelastic half-spac
under either a surface or buried heat source. This situation is s
ied here by employing the coupled inertial thermoelasticity the
of Biot @8# ~see also Achenbach@9#!. In particular, we focus atten
tion on the surface disturbance of the Rayleigh-type and provid
closed-form expression for the associated displacement field
deed, past experience with pure mechanical~i.e., without any ther-
mal effects! versions of the present problem indicates that
Rayleigh-wave disturbance is thedominantone over the surface
after a certain time~see e.g., the 2D analysis of Garvin@10# in-
volving a buried dilatational source in a half-plane and the
analysis of Pekeris and Lifson@11# involving a buried concen-
trated vertical force in a half-space!.

We should mention that a recent study by the present aut
and Brock~Lykotrafitis, Georgiadis, and Brock@12#! dealt with

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, March 2, 20
final revision, May 24, 2004. Associate Editor: H. Gao. Discussion on the pa
should be addressed to the Editor, Professor Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
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the same problem studied here and provided an evaluation o
complete field at the surface. This field comprises thermoela
dilatational and Rayleigh waves, and elastic shear waves. H
ever, the latter study relies much upon numerical analysis~involv-
ing numerical wavenumber integrations and numerical Lapla
transform inversions! and does not furnish an analytica
expression for the evaluation of the surface displacements.
stead, our aim here is to provide a simpleclosed-formexpression
for the Rayleigh-wave disturbance without using any special
merical technique. This was made possible by using asympto
and certain results of complex-variable theory and Bessel fu
tions in addition to the basic integral-transform analysis of R
@12#. The key idea used is making explicit the appearance
Rayleigh-wave poles by obtaining an approximate form of
Rayleigh function that exhibits no dispersion but still depen
upon the thermoelastic constants. Notably, this approximate f
is numerically very close to the exact one giving therefore v
accurate results.

It should be mentioned that most of the studies published be
on wave propagation induced by sudden heating model the p
lems asone-dimensional~see e.g., Boley and Tolins@13#, and
Hetnarski and Ignaczak@14#!, employuncoupledthermoelasticity
~see e.g., Sve and Miklowitz@2#! or treat onlyinfinite domains,
i.e., full spaces~see e.g., Predeleanu@15#, Fleurier and Predeleanu
@16#, Sharp and Crouch@17#, and Manolis and Beskos@18,19#!.
Also, some of the aforementioned works consider the special c
of a time-harmonicresponse. On the contrary, the present stu
aims at a more realistic formulation of these problems and
therefore based on the transient coupled inertial thermoelasti
while it treats a three-dimensional problem in a half-space
main. Notice that the relevance of the constitutive theory u
here to thermal-shockproblems—particularly the importance o
inertial and thermal-coupling effects—was shown in the studies
Hetnarski@20#, Boley and Tolins@13#, Sternberg and Chakravort
@21,22#, and Francis@23#. More recent work employing this theor
in transient problems of wave propagation and fracture w
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done by, among others, Atkinson and Craster@24#, Brock @25#,
Brock, Rodgers and Georgiadis@26#, Brock and Georgiadis@27#,
Georgiadis, Brock, and Rigatos@28#, and Georgiadis, Rigatos, an
Brock @29#. Finally, within the context of a different theory
namely inertialess and uncoupled thermoelasticity, soluti
for thermally activated surface displacements in a half-space w
obtained by Barber@30# and Barber and Martin-Moran@31#.

2 Problem Statement
Consider a 3D body in the form of a half-spacez.2H ~see

Fig. 1! which is both thermally conducting and deformable. T
body is initially at rest and at uniform temperatureT̃0 . At time t
50, a thermal source acts at a point situated at a depthH below
the surface. This point of the half-space is taken as the origin
the Cartesian coordinate system (x,y,z). A concentrated therma
source having an impulsive time variation is assumed, with
understanding that the solution of this problem~Green’s function
or fundamental solution! can be integrated in space and time
give then the solution for any general thermal loading. Also,
source has an intensityKQ, whereK is the thermal conductivity
with dimensions of~power!~length!21~°C!21, °C means degrees o
temperature andQ is a multiplier expressed in~°C!~length!~time!.

Then, according to the linear, isotropic, inertial coupled th
moelasticity theory~Biot @8#, Achenbach@9#, Chadwick@32#, and
Carlson@33#!, the governing equations for this problem are wr
ten as

s5m~¹u1u¹!1l~¹•u!12k0~3l12m!u1, (1)

q52K¹u, (2)

m¹2u1~l1m!¹~¹•u!2k0~3l12m!¹u5r
]2u

]t2
, (3)

K¹2u2rcv

]u

]t
2k0~3l12m!T̃0

]~¹•u!

]t

1KQ•d~ t !•d~x!•d~y!•d~z!50, (4)

where ~1! is the Neumann-Duhamel law,~2! is the heat-
conduction Fourier law,~3! is the displacement-temperatu
equation of motion, and~4! is the coupled heat equation. Also,
the above equations,s is the stress tensor,u is the displacemen

Fig. 1 A thermally conducting and deformable body in the
form of 3D half-space under the action of a buried „HÅ0… or
surface „HÄ0… heat source
130 Õ Vol. 72, JANUARY 2005
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vector, u5T̃2T̃0 is the change in temperature,T̃ is the current
temperature,T̃0 is the initial temperature,q is the heat-flux vector,
~l,m! are the Lame constants,k0 is the coefficient of linear ex-
pansion,r is the mass density,cv is the specific heat at constan
deformation,d~ ! is the Dirac delta distribution,1 is the identity
tensor,¹ is the gradient operator, and¹25(]2/]x2)1(]2/]y2)
1(]2/]z2) is the Laplace operator. All field quantities above a
functions of (x,y,z,t).

In addition, zero initial conditions are taken, i.e.

u5]u/]t5u50 for t<0 in ~2`,x,`,2`,y,`,

2H,z,`!, (5)

and we also assume that the half-space surfacez52H is traction
free and insulated~i.e., no heat is conducted through the ha
space surface and air!. Finally, the pertinentfinitenessconditions
at remote regions~Ignaczak and Nowacki@34#! state that the field
at infinity remains bounded although temperature signals trave
according to Biot’s theory—at an infinite speed.

The objective of the present work is to determine the verti
displacement at the surface for the problem described
Eqs.~1!–~5!. The solution of this problem is greatly facilitated b
removing the source term in~4! and considering this term as
discontinuity along animagined planeat z50. This strategy was
introduced first by Pekeris@35# ~see also Miklowitz@36#! in treat-
ing the pure mechanical problem of a half-space under a bu
vertical force. Considering thus an imaginary plane alongz50
that separates the original half-space into the half-space 0,z
,` ~region 1 in Fig. 1! and the strip2H,z,0 ~region 2 in
Fig. 1!, we write the pertinent continuity and discontinuity cond
tions at z50 along with the standard boundary conditions
z52H

u~1!~x,y,0,t !5u~2!~x,y,0,t !, (6a)

u~1!~x,y,0,t !5u~2!~x,y,0,t !, (6b)

sz j
~1!~x,y,0,t !5sz j

~2!~x,y,0,t !, (6c)

]u~1!~x,y,0,t !

]z
2

]u~2!~x,y,0,t !

]z
5Q•d~ t !•d~x!•d~y!, (6d)

sz j~x,y,2H,t !50, (7a)

]u~x,y,2H,t !

]z
50, (7b)

where2`,x,`, 2`,y,`, ( j 5x,y,z), and the superscrip
in parentheses 1 or 2 attached to a field quantity means tha
planez50 is approached asz→01 or z→02, respectively.

In this way, the original problem~1!–~5! and ~7! is equivalent
to the problem described by~1!–~3! and ~5!–~7! and with the
equation K¹2u2rcv(]u/]t)2k0(3l12m)T̃0(](¹•u)/]t)50
replacing now Eq.~4!. Further, a convenient normalization is pe
formed allowing the two field equations of the problem@i.e., Eqs.
~3! and ~4! with no source terms# to take the form

¹2u1~m221!¹D1k¹u2m2
]2u

]s2
50, (8)

k

m2
¹2u2

k

hm2

]u

]s
1

«

h

]D

]s
50, (9)

wheres5V1t is the normalized time~with dimension of length!,-
Transactions of the ASME
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V15@(l12m)/r#1/2 is the dilatational-wave velocity in theab-
sence of thermal effects~i.e., within the ‘‘pure’’ mechanical
theory!, k52k0(3l12m)/m5k0(423m2),0 is the normal-
ized coefficient of linear expansion,«5(T̃0 /cv)(kV2 /m)2 is the
dimensionless coupling coefficient,h5(KV2 /mmcv) is the ther-
moelastic characteristic length,V25(m/r)1/2 is the shear-wave
velocity, m5V1 /V2.1, andD5¹•u is the dilatation. As regards
the range of numerical values that« and h take on, for most
materials the characteristic length is very small@typically h
5O(10210 m), see, e.g., Chadwick@32## but the coupling coeffi-
cient can be as high as«5O(1021) ~e.g.,«50.36 for Polycarbon-
ate atT̃0540°C). The fact thath is very small with respect tos
for a rather wide time-range will be conveniently utilized in th
ensuing analysis.

3 Basic Integral-Transform Analysis
This section essentially reproduces relevant material from

recent related work~Lykotrafitis, Georgiadis, and Brock@12#!.
This material is briefly presented here for the sake of compl
ness and because of the need to introduce certain definitions.
also emphasized that although the form of conditions~6! and ~7!
suggest existence of an axisymmetric field, the basic integ
transform analysis presented here is appropriate for more ge
nonaxisymmetricsituations. This is why we do not use the Hank
transform below. Certainly, the fact that we deal with an axisy
metric field in our specific problem will emerge in the course
solving the problem.

The dependence of the problem on the variables (x,y,s) is
suppressed through the use of multiple Laplace transforms~see
e.g., van der Pol and Bremmer@37#, and Carrier et al.@38#!. The
unilateral transform pair~direct and inverse transform! is defined
as

F~x,y,z,p!5E
0

`

w~x,y,z,s!•e2psds, (10a)
Journal of Applied Mechanics
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w~x,y,z,s!5~1/2p i!E
G1

F~x,y,z,p!•epsdp, (10b)

and the direct transform suppresses the timelike variables. The
double bilateral transform pair is defined as

F* ~q,w,z,p!5E
2`

` E
2`

`

F~x,y,z,p!•e2p~qx1wy!dxdy,

(11a)

F~x,y,z,p!5~p/2p i!2E
G2

E
G3

F* ~q,w,z,p!•ep~qx1wy!dqdw,

(11b)
and the direct transform suppresses the space variables (x,y). In
what follows, we save a capital letter for the unilateral dire
transform, whereas the double bilateral direct transform is deno
by an asterisk. It is also noticed that~van der Pol and Bremme
@37#!: ~1! Because of Lerch’s theorem for the uniqueness
unilateral Laplace transforms and because of the existenc
Widder’s inversion formula for realp, it is sufficient to view
F(x,y,z,p) as a function of areal variablep over some segmen
of the real axis in the half-plane of analyticity. OnceF(x,y,z,p)
is determined as an explicit function ofp in the course of solving
the transformed differential equations, its definition can be
tended to the whole complexp-plane, except for isolated singula
points, through analytic continuation.~2! The variablesq and w
should be treated ascomplex. ~3! The integration pathG j ,
with ( j 51,2,3), is a line parallel to the imaginary axis in th
associated transform plane and lieswithin the region of
analyticity.

Applying now ~10a! and ~11a! to the governing equations~1!,
~8!, and~9!, and considering~5! yields the following general ex-
pressions for the transformed temperature change, displacem
and stresses~details of this procedure are given in Appendix A
Ref. @12#!. These expressions are, of course, different in the
gions 1 and 2 of the original half-space.
~a! Region 1 (0,z,`):

l

k

m2
Q*

pUx*

pUy*

pUz*
1

m
Sxy*

1

m
Sxz*

1

m
Syz*

1

m
Sxx*

1

m
Syy*

1

m
Szz*

m
5

l

M 1 M 2 0 0 0 0 0 0

2q 2q 1 0 0 0 0 0

2w 2w 0 1 0 0 0 0

a1 a2

q

b

w

b
0 0 0 0

22qw 22qw w q 0 0 0 0

2qa1 2qa2 2
Tw

b

wq

b
0 0 0 0

2wa1 2wa2

wq

b
2

Tq

b
0 0 0 0

Tw1 Tw2 2q 0 0 0 0 0

Tq1 Tq2 0 2w 0 0 0 0

2T 2T 22q 22w 0 0 0 0

m 3
X1e2pa1z

X2e2pa2z

X3e2pbz

X4e2pbz

0
0
0
0

4 . (12)
JANUARY 2005, Vol. 72 Õ 131



~b! Region 2 (2H,z,0):

l

k

m2
Q*

pUx*

pUy*

pUz*
1

m
Sxy*

1

m
Sxz*

1

m
Syz*

1

m
Sxx*

1

m
Syy*

1

m
Szz*

m
5

l

M 1 M 1 M 2 M 2 0 0 0 0

2q 2q 2q 2q 1 0 1 0

2w 2w 2w 2w 0 1 0 1

2a1 a1 2a2 a2

2q

b

2w

b

q

b

w

b

22qw 22qw 22qw 22qw w q w q

22qa1 2qa1 22qa2 2qa2

Tw

b

2wq

b

2Tw

b

wq

b

22wa1 2wa1 22wa2 2wa2

2wq

b

Tq

b

wq

b

2Tq

b

Tw1 Tw1 Tw2 Tw2 2q 0 2q 0

Tq1 Tq1 Tq2 Tq2 0 2w 0 2w

2T 2T 2T 2T 22q 22w 22q 22w

m 3
X5epa1z

X6e2pa1z

X7epa2z

X8e2pa2z

X9epbz

X10e
pbz

X11e
2pbz

X12e
2pbz

4 (13)
u
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whereQ* is the multiply-transformed change in temperature, a
(Ux* ,Uy* ,Uz* ) and (Sxy* ,Sxz* , . . . ,Szz* ) are the multiply-
transformed components of, respectively, the displacement ve
and the stress tensor. We should also notice that solution~12! is
bounded atz→` appropriately satisfying thus the finiteness co
ditions, whereas such constraints need not be imposed on sol
~13!. In the above equations, the yet unknownX1 , X2 , . . . ,X12
are arbitrary functions of (q,w,p) which have to be determine
from the boundary conditions in each specific problem. Also,
following definitions are employed in~12! and ~13!:

a65~m6
2 2q22w2!1/2, (14a)

b5~m22q22w2!1/2 (14b)

m65
1

2 F S 11
1

~hp!1/2D 2

1
«

hpG 1/2

6
1

2 F S 12
1

~hp!1/2D 2

1
«

hpG 1/2

,

(15)

M 65m6
2 21, (16)

T52b22m25m222~q21w2!, (17a)

T652a6
2 2m2 (17b)

Tq65T612q2, (18a)

Tw65T612w2 (18b)

Tq5T1q2, (19a)

Tw5T1w2. (19b)

Further, a new complex variablez is defined throughz25q2

1w2 allowing the placement of necessarybranch cutsfor the
functions a6[a6(z,p)5(m6

2 2z2)1/2 and b[b(z)5(m2

2z2)1/2. These restrictions in thez-plane are in accord with the
chosen solution forms in~12! and~13!. For the representative cas
of b~z!, Fig. 2 depicts these branch cuts~the cuts are situated
outwards with respect to the originz50—a similar situation exists
for the functionsa6(z,p)). In this way, it is Rea1>0, Rea2

>0, and Reb>0 in the cut plane. Also, we record here the tw
possible arrangements ofm1 , m2 , and m with respect to their
magnitude. This information in conjunction with the placement
132 Õ Vol. 72, JANUARY 2005
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branch cuts will enable the proper definition of the regions
analyticity of various functions appearing in the analysis.

The quantitiesm1 andm2 arep-dependent~recall thatp is real
and non-negative!, whereasm is constant. From their definitions
the following inequalities follow:

m2,m1,m for hp.
m2~11«!21

m2~m221!
, (20a)

m2,m,m1 for hp,
m2~11«!21

m2~m221!
. (20b)

In addition, useful approximations for the quantitiesm1 and
m2 can be obtained from~15! by takings→(1/p), whens is very
small or very large, and by performing series expansion and ke
ing the dominant terms~see e.g., Carrier et al.@38# for similar
procedures!. The following approximate forms considerably sim
plify unilateral Laplace transform inversions

m1>1 and m2>
1

~hp!1/2
for

s

h
!1, (21a)

m1>S 11«

hp D 1/2

and m2>
1

~11«!1/2
for

s

h
@1.

(21b)

Notice that validity of~20a! or ~20b! is necessary but not suffi
cient for, respectively, the validity of~21a! or ~21b!.

Finally, it turns out that the case in~20a! is rather impractical
since it corresponds to anextremely smallinitial time interval of
the process, which for most conducting materials ist
,O(10213 s). This is found by takings→(1/p) for very smalls
~i.e., for very small time!. In the present study, information i
needed generally for longer times so we shall focus interest o
on the case~20b! and employ~21b! appropriately. Any case with
say, (s/h)>100 leads to a reasonable approximation form6 . The
results in~21b! are indeed robust because the normalized time
scaled by an extremely small length~the thermoelastic character
istic length!.

Now, transforming via ~10a! and ~11a! the continuity/
discontinuity conditions~6! and the boundary conditions~7!, in
view also of the general transformed solutions~12! and~13!, leads
to a linear algebraic system of 12 equations in the 12 unkno
Transactions of the ASME
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X1 , X2 , . . . ,X12. Obviously, an exact~i.e., symbolicaland not
numerical! solution to the system is sought here and this w
made possible by using MATHEMATICA™. The expressions f
X1 , X2 , . . . ,X12 are given in Appendix A.

Having available the solution (X1 ,X2 , . . . ,X12) and therefore,
by ~12! and ~13!, the general expressions for the double tra
formed temperature, displacements and stresses allows dete
ing the field quantities at any point of the original space and at
time instant through successiveinversionsof the type~11b! and
~10b!. However, we emphasize at this point that a treatment
ploying the Cagniard–deHoop technique@9,36,39# to accomplish
the transform inversions in an exact manner seems to be im
sible due to the very complicated multiple transformed solution
the present problem. In the simpler buried-source problems
non-thermal type such a difficulty was not met and the Cagnia
deHoop technique had successfully been applied~see e.g., Pekeris
@35#, Garvin@40#, and Payton@41#!. Indeed, we note that, after th
appropriate contour integration involved in the Cagniard–deH
technique, the integrand in the semi-infinite branch-line integ
tion is still p-dependent and, therefore, the unilateral transfo
inversion is impossible to be carried out exactly through the s
dard inspection procedure. For more details on this difficulty,
refer to the work by Georgiadis et al.@29#, who treated the coun
terpart 2D problem and employed anapproximationat a similar
point of the analysis. Their asymptotic approach is, however,
ferent than that employed here~see Sec. 4 below!.

We close the presentation of the basic integral-transform an
sis by noticing that if, instead ofd(t), a general dependence from
time of the thermal loading in~4! is to be considered~denoted by
an arbitrary functiong(t)), then the quantityQ in the equations of
Appendix A has to be replaced by (Q/V1)•G(p), whereG(p)
denotes the unilateral Laplace transform of the funct
g((s/V1)[t).

4 Transformed Solution and Asymptotic Consider-
ations

In what follows, we focus attention on the evaluation of t
vertical displacement at the surfaceuz(x,y,z52H,t). In view of
the previous results, the multiply transformed displacem
Uz* (q,w,z52H,p)[Uz* (z,z52H,p) is given by

Uz* ~z,z52H,p!5kQV1

T

p2

a1e2a2pH2a2e2a1pH

D~z,p!
, (22)

where the functionsa1(z,p) anda2(z,p), and the complex vari-
ablez have been defined before. Also, from~17a! and the defini-
tion of z, it is T5m222z2. One may notice that the very defin
tion of the variablez and the form ofUz* in ~22! exhibit the

Fig. 2 Branch cuts for the function b„z…Æ„m 2Àz2
…

1Õ2 in the
complex z-plane. Similar branch cuts, emanating from the
points mÁ„p …, are also introduced for the functions aÁ„z…
Æ„mÁ

2 Àz2
…

1Õ2.
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axisymmetricnature of the problem, a fact that will become ev
dent in the ensuing procedure. Finally, of central importance to
solution for thesurfacedisturbances is the functionD, which is
associated with waves of Rayleigh type. This is given as

D[D~z,p!5a2M 2R12a1M 1R2 , (23)

where the functions

R1[R1~z,p!54z2a1b1T2, (24a)

R2[R2~z,p!54z2a2b1T2, (24b)

can be identified as thethermoelasticcounterparts of the nonther
mal pure-elastic Rayleigh function~transformed function!, which
is given asRelastic54z2ab1T2, with a[a(z)5(12z2)1/2 and
b[b~z! given as before~see e.g., Achenbach@9#, Miklowitz @36#!.
Contrary to the latter case,R1 and R2 exhibit a p-dependence
showing therefore that the thermoelastic Rayleigh waves in
physical space/time domain are dispersive. However, it w
shown in the study of Georgiadis, Brock, and Rigatos@28# that
generally the thermoelastic Rayleigh-wave velocity varies o
slightly with time, a result explained in view of the fact that whi
there is a strong shear contribution~which remains unaffected by
thermal effects! to the Rayleigh waves, the dilatational part
them is very weak~see e.g., Viktorov@42#!. We will take advan-
tage of this result immediately initiating the asymptotic consid
ations to obtainuz(x,y,z52H,t).

It will be shown, indeed, that the functionD can be expressed
in terms of anapproximateRayleigh function that exhibitsno
dispersion~i.e., this Rayleigh function does not contain the tim
transform variablep! but still depends on the coupling constant«.
The approximate form of the functionD itself will exhibit depen-
dence upon the thermoelastic constants («,h) and the transform
variables (z,p). First, one may write from~23! and ~24! the fol-
lowing expression for the function (D/a1):

D

a1
54z2a2bM 1S M 2

M 1
21D1T2M 1S a2M 2

a1M 1
21D . (25)

Now, the terms (M 2 /M 1) and@(a2M 2)/(a1M 1)# in the above
expression, in view of~14a! and ~16!, are written as

M 2

M 1
5

m2
2 21

m1
2 21

(26a)

and

a2M 2

a1M 1
5

~m2
2 2z2!1/2

~m1
2 2z2!1/2

m2
2 21

m1
2 21

. (26b)

Further, when (s/h)@1, use of the expressions form1 andm2 in
either ~15! or ~21b! lead to the results

UM 2

M 1
U!1 (27a)

and

Ua2M 2

a1M 1
U!1. (27b)

To give a numerical estimate, we obtain values of the ra
@(a2M 2)/(a1M 1)# for different p’s ~recall thatp is the time
Laplace-transform variable!. The constants of a model materia
utilized in the present study to derive numerical results~see Sec. 6
below! are employed. These constants are«50.011, h51.864
31029 m, and Poisson’s ration50.3 @which gives a ratio of wave
velocitiesm[(V1 /V2)51.8708]. Also, we takez5zR , which is
the value corresponding to the arrival of the Raylei
wavefront—see Eq.~36! below and which for the model materia
is calculated to bezR52.0162. Then, the following values of th
ratio in question are obtained:
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@~a2M 2!/~a1M 1!#521.73840310211 for p5102,

@~a2M 2!/~a1M 1!#521.51502310215 for p5100,

@~a2M 2!/~a1M 1!#524.79091310223 for p51025,

which clearly show that for increasing time~i.e., decreasingp! the
ratio rapidly diminishes and can practically be taken equal to z
The same applies to the ratio (M 2 /M 1) as well.

Then,~27! allow writing ~25! under the following approximate
form:

D

a1
52M 1~4z2a2b1T2!, (28)

and, sincem1@1 for (s/h)@1, one may further obtain in view o
~16!

D

a1
52m1

2 ~4z2a2b1T2!, (29)

where in the last two expressions and, also, in what follows
quantitiesm1 andm2 assume the forms@taken from~21b!#

m15S 11«

hp D 1/2

, (30a)

m25
1

~11«!1/2
. (30b)

Finally, in view of the above, Eq.~29! becomes

D

a1
52

11«

hp F ~m222z2!214z2S 1

11«
2z2D 1/2

~m22z2!1/2G
[2

11«

hp
Rtherm, (31)

where the symbol[ means equality by definition.
In the above result, the approximate Rayleigh functionRtherm

exhibits no dispersion~i.e., it does not depend uponp! but de-
pends upon the coupling constant«. All the above approximations
will properly be utilized below.

The next step is to determine the zeros of the function (D/a1),
which is given in~31!. This information will be utilized later in
the inversion procedure. By invoking the principle of the arg
ment~see e.g., Carrier et al.@38#, and Ablowitz and Fokas@43#!, it
can be shown that the two real zerosz56zR of the function
(D/a1) are the only zeros of this function in the entirez-plane.
These correspond to axisymmetric thermoelastic Rayleigh wa
fronts propagating with a velocityVR5V1 /zR along the traction-
free half-space surface. Working with realp such that p.0
@which, of course, is necessary for the convergence of the inte
defining the unilateral Laplace transform in Eq.~10a!# in the case
of interestm2,m,m1 @cf. Eq. ~20b!#, we can obtain a closed
form expression for the rootzR by utilizing factorization opera-
tions of the kind encountered in solving Wiener–Hopf equatio
~see e.g., Achenbach@9#, Carrier et al.@38#, and Ablowitz and
Fokas@43#!. The function (D/a1) is analytic in thez-plane cut
along the interval (m2,uRe(z)u,m, Im~z!50! and behaves like
2m1

2 (m22m2
2 )z2 $with m15@(11«)/hp#1/2 and m25(1

1«)21/2% as uzu→`. Consequently, an auxiliary functionS(z) is
introduced through the definition

S[
~D/a1!

2m1
2 ~m22m2

2 !~z22zR
2 !

, (32)

which possesses the desired asymptotic propertyS(z)→1 as
uzu→` and, additionally, has neither zeros nor poles in thez-plane.
The only singularities ofS are the branch pointsz56m2 andz
56m @which are shared with the original function (D/a1)], so it
is single-valued in thez-plane cut along the interval (m2

,uRe(z)u,m, Im~z!50!. Then, the standard technique of facto
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ization through the use of Cauchy’s integral theorem~see e.g.,
Achenbach@9#, Carrier et al.@38#, and Ablowitz and Fokas@43#!
allows writing

S5S1
•S2, (33)

whereS1 andS2 are analytic functions in the overlapping hal
planes Re(z).2m2 and Re(z),m2 , respectively. These are give
by

S6~z!5expF2
1

p E
m2

m

arctanS 4v2ua2uubu

T2 D dv

v6zG , (34)

where

a2[a2~v!5~m2
2 2v2!1/2, (35a)

b[b~v!5~m22v2!1/2. (35b)

Further, one may observe from~34! that S1(z50)5S2(z
50) and, therefore,S(z50)5@S1(z50)#2. Now, we exploit the
latter observation by takingz50 and also take into account~32!–
~34! to obtain the followingexplicit formula for the root of the
function (D/a1). This root defines the speed of thermoelas
Rayleigh waves

zR5
m2

@2~m22m2
2 !#1/2

•S1~z50!
. (36)

It is noticed, finally, that the inequalitym,zR always holds.

5 Inversion Procedure and Solution in the Physical
SpaceÕTime

In view of the definition~11b!, one can write the unilatera
Laplace transformed vertical displacement in the form

Uz~x,y,z52H,p!5S p

2p i D
2E

2 i`

1 i`E
2 i`

1 i`

Uz* ~q,w,z52H,p!

•epqxepwydqdw, (37)

whereUz* is given in ~22!. Next, axisymmetry~circular symme-
try! of the problem will become clear and be exploited. To th
end, we setq5 is and w5 i t so thatz2[q21w252(s21t2)
52r2, and further consider the polar coordinates (r ,q) and
~r,f! defined through the relationsx1 iy5reiq and s1 i t
5reif. The first set of polar coordinates refers to the physi
plane (x,y), whereas the second set to the transform plane~s,t!.
Considering also the casex>0 andy>0 ~which, as will become
clear soon, does not impose any restriction to the solution!, it
should be Im~s!>0 and Im~t!>0, whereasr[(s21t2)1/2>0.

Now, in view of ~22!, ~31! and the newly introduced pola
coordinates, we obtain

Uz~r ,u,z52H,p!

5
kQV1

4p2 E
0

`S E
0

2p a1Te2a2Hp2a2Te2a1Hp

D~r,p!

3exp~2 iprr•cos~f2q!!df D rdr, (38)

and further, by observing that the inner integral in~38! is actually
independent on the starting limit of the integration interval, w
eliminate the variableq from the problem and get
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Uz~r ,u,z52H,p!

5
kQV1

4p2 E
0

`S a1Te2a2Hp2a2Te2a1Hp

D~r,p!

3E
0

2p

exp~2 iprr•cosf!df D rdr

5
kQV1

2p E
0

` a1Te2a2Hp2a2Te2a1Hp

D~r,p!
J0~prr!•rdr.

(39)

In the above relation, we havea65(m6
2 1r2)1/2, b5(m2

1r2)1/2, T5m212r2, and

D~r,p!52
11«

hp S 11«

hp
1r2D 1/2F ~m212r2!224r2S 1

11«

1r2D 1/2

~m21r2!1/2G52
11«

hp S 11«

hp
1r2D 1/2

Rtherm,

(40)

while the following standard result for the Bessel functionJ0( )
was used~see e.g., Watson@44#!

1

2p E
0

2p

exp~2 iprr•cosf!df5J0~prr!. (41)

One may observe that the last integral in~39! is but aninverse
Hankel transform~see e.g., Bracewell@45#!. This confirms the
circular symmetry of the problem.

Next, another change of variable defined by settingv5prr
leads to the following expression for a normalized expression
the unilateral Laplace-transformed vertical displacement at
surface

Uz
norm~r ,z52H,p!52

1

2~m22m2
2 !r 2

3E
0

` S e2a2Hp2
a2

a1
e2a1HpDT

m1
2 S v2

p2r 2
1zR

2 D •SS i
v

pr D
3

v

p2
J0~v!dv, (42)

whereUz
norm5(2pUz)/(kQV1), and the symbolsa1 , a2 , andT

take the following forms@which, of course, follow from the defi-
nitions in ~14a! and ~17a! and the several changes of variable
the previous analysis#

a65S m6
2 1

v2

p2r 2D 1/2

, T5m212
v2

p2r 2
. (43a,b)

Finally, we consider the inverse unilateral Laplace transform
~10b! and, further, interchange the latter integration and the in
gration in ~42!. This is permissible since the integral in~10b!
convergesuniformly within its region of convergence in the com
plex p-plane @37#. Cf. Miklowitz @36# and Markenscoff and Ni
@46#, e.g., for similar interchanges of the integration order in m
tiple transform inversions. In this way, we obtain the normaliz
vertical displacement at the surface,uz

norm5(2puz)/(kQV1), in
the physical space/time
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uz
norm~r ,z52H,s!

52
1

4p i

1

~m22m2
2 !zR

2r 2

•E
0

`S E
c2 i`

c1 i` S e2a2Hp2
a2

a1
e2a1HpDT

m1
2 ~p2 ipR!~p1 ipR!•SS i

v

pr D
epsdpD

3vJ0~v!dv,
(44)

where

a15S 11«

h D 1/2 1

p
g1 , (45a)

a25
1

~11«!1/2p
g2 , (45b)

g1[g1~p,v!5S p1
h

~11«!r 2
v2D 1/2

, (46a)

g2[g2~p,v!5S p21
~11«!

r 2
v2D 1/2

, (46b)

and

pR5
v

zRr
. (47)

Notice that the branch cuts depicted in Fig. 3 should be int
duced to render the functionsg1 andg2 single-valued. Also, the
constantc in the inner integral of~44! is taken slightly greater
than zero since allsingularities~poles and branch points! of the
corresponding integrand are situated in the plane Re(p)<0. Spe-
cifically, these singularities include the poles at6 ipR , the branch
point 2hv2((11«)r 2)21 for the functiong1 , and the branch
points6 iv(m2r )21 for the functiong2 ~see Fig. 3!.

With the above results available, we now focus interest on
thermoelastic Rayleigh waves. As is well-known~see e.g., Chao
et al. @47#, Achenbach@9#, and Miklowitz @36#!, analytically the
Rayleigh-wave effects correspond to the contributions from c
tain poles in the integrands of the inversion integrals. Indeed
our previous analysis we were able to make explicit the app
ance of Rayleigh-wave poles@cf. Eq. ~44!#.

We proceed now to evaluate the pole contribution in~44! ob-
taining therefore an approximate solution for the thermoela
Rayleigh-wave signals along the half-space surface. Care sh
be exercised, however, in evaluating the functionsa1(p,v) and
a2(p,v) at the points6 ipR , which lie along the Bromwich path
(c2 i`,c1 i`) ~see Fig. 3!. The following results are obtained:

a157 i zR,R
1/2 exp~6 iu/2!, (48a)

a257 i uaR2u at p56 ipR , (48b)

where

aR25~m2
2 2zR

2 !1/2, (49a)

,R5~11tan2 u!1/2, (49b)

tanu5
~11«!r

hzRv
. (49c)

The symbolu in the above relations~denoting an angle in Fig. 3!
should not be confused with the symbol used earlier to denote
change in temperature. Then,~44! provides the following expres-
sion for the disturbance due to the thermoelastic Rayleigh wa
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uz
norm~r ,z52H,s!52

L

r 2 E
0

`

f ~r ,H,v,s!•v•J0~v!dv,

(50)

where

f ~r ,H,v,s!5expS 2
vuaR2uH

zRr D cosS vs

zRr D

2

uaR2uexpS 2
v

r
,R

1/2H cos~u/2! D
zR,R

1/2

3cosF vs

zRr
2

u

2
2S v

r
,R

1/2H sin~u/2! D G , (51)

L5
m222zR

2

4S 11«

h D •S~zR!•~m22m2
2 !zR

2

. (52)

Further, as the analysis in Appendix B shows, the second t
of f (r ,H,v,s) in ~51! is negligible with respect to the first term
Omitting the small term, the normalized vertical displacement
comes

uz
norm~r ,z52H,s!52

L

r 2 E
0

`

expS 2
vuaR2uH

zRr D
3cosS vs

zRr D J0~v!vdv. (53)

Finally, evaluation of the integral in~53! ~Watson@44#! yields
the following closed-formexpression for the normalized vertica
displacement at the surface due to Rayleigh waves generated
buried thermal source in a half-space

uz
norm~r ,z52H,s!52

L

r 2
ReF uaR2uH

zRr
2 i

s

zRr

F11S uaR2uH
zRr

2 i
s

zRr D
2G3/2G ,

(54)

wherer is the radial distance from the epicenter, Re@ # denotes the
real part of a complex function, and the quantitiesL, aR2 andzR

depend on the material constants. It is also of notice thatuz
norm

depends on the ratio (H/r ).

Fig. 3 Branch cuts for the functions g¿„p ,v… and gÀ„p ,v…,
and the Bromwich path in the complex p -plane
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rm
.
e-

l
by a

6 Numerical Results, Further Asymptotic Results, and
Concluding Remarks

Numerical results from the previous expression are obtai
easily through the use of MATHEMATICA™ for both numerica
integrations and symbolic manipulations involved. A model ma
rial was considered to derive the results shown in the graph
Figs. 4 and 5. It is characterized by the following constants: c
pling constant«50.011, thermoelastic characteristic lengthh
51.86431029 m, and Poisson’s ration50.3 @this value gives a
ratio of wave velocitiesm[(V1 /V2)51.8708]. The graphs
present the variation of the normalized vertical displacem
uz

norm[2puz(kQV1)21 with the normalized time V1(r 2

1H2)21/2t. In Fig. 4, the caser 510H is considered, whereas in
Fig. 5, both casesr 540H and r 5160H are presented. In al
cases,H5100 m is taken but a numerical inspection showed t
the shape of pulse does not change appreciably if normalizatio
utilized ~the displacement itself becomes larger for smal
depths!.

The graphs show the generation of the thermoelastic Rayle
wave at the half-space surface. We notice that as the distanc
the observation station from the epicenter increases, the shap
the Rayleigh disturbance appears to become sharper becau
the contraction of the real time scale with the increase of
length (r 21H2)1/2. Also, as the observation station moves aw
from the epicenter,decayin amplitude occurs after a certain poin
This attenuation is due to the 3D geometry of the problem~see for
analogous nonthermal situations in Pekeris and Lifson@11#, and
Achenbach@9#!. On the contrary, the latter result is not encou
tered in the respective 2D problem of a nonthermal buried dila
tional source treated by Garvin@10#, where once the Rayleigh
pulse takes its shape, it is not decaying.

In the sequel, we further investigate the behavior ofuz
norm(r ,z

52H,s) at large distances from the epicenter, i.e., forr @H. In
this case, it is (r 21H2)1/2>r and the normalized vertical dis
placement takes the form

uz
norm~r @H,z52H,s!>2L ReF X2 iY r

~r 21X22Y2r 22 i2XYr!3/2G ,

(55)

whereX5uaR2u•H/zR and Y5VRt/r . Taking r @H leads to the
conclusion thatr @X and then~55! takes the even simpler form

Fig. 4 The variation of the normalized vertical displacement
u z

normÆ2pu z„kQV1…
À1 with the normalized time s „r 2¿H2

…

À1Õ2

indicating the arrival of a thermoelastic Rayleigh wave at the
station rÄ10H. The constants have the values «Ä0.011, h
Ä1.864Ã10À9 m, nÄ0.3, and HÄ100 m.
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uz
norm~r @H,z52H,s!>2L ReF X2 iY r

~r 22Y2r 22 i2XYr!3/2G .

(56)

In addition, we can investigate the fieldnear the Rayleigh
wavefront. To this end, the transformationxR5VRt2r is used in
~56!, wherexR denotes the distance from the Rayleigh wavefro
providing

uz
norm~r @H,z52H,s!

>2
L

r 1/2
ReF X

r
2 i S xR

r
11D

F2xRS xR

r
12D2 i2XS xR

r
11D G3/2G .

(57)

Now, by takingr @X andr @xR , we get the following expression
for the vertical displacement far from the epicenter and, at
same time, very close to the Rayleigh wavefront

uz
norm~r @H,r @xR ,z52H,s!>2

L

~8r !1/2
ReF 2 i

~2xR2 iX !3/2G .

(58)

The above relation reveals that the displacement varies with
distance from the epicenter asuz

norm(r @H,r @xR ,z52H,s)
'r 21/2, while in the case of a source that is situated very close
the surface~i.e., whenxR@X) the displacement varies with th
distance from the Rayleigh wavefront asuz

norm(r @H,r @xR ,
z52H,s)'xR

23/2. The first of the aforementioned results show
that the surface effects attenuate with distance asr 21/2, the physi-
cal explanation of which is that the surface waves in our
problem are essentially cylindrical waves~see Ref.@9# for analo-
gous situations in classical elastodynamics!.

In conclusion, the 3D transient dynamic problem of a th
moelastic half-space under thermal buried or surface loadin
treated in this paper. The loading has the form of a concentr
heat flux applied impulsively and Biot’s fully coupled thermoela
ticity is utilized. The problem has relevance to situations invo
ing heat generation due to, e.g., laser action~impulsive electro-
magnetic radiation! on a surface target, underground nucle
activity, and friction developed during underground fault motio
Here, we were particularly interested in determining inclosed

Fig. 5 The variation of the normalized vertical displacement
u z

normÆ2pu z„kQV1…
À1 with the normalized time s „r 2¿H2

…

À1Õ2

indicating the arrival of a thermoelastic Rayleigh wave at the
stations rÄ40 H and rÄ160 H. The constants have the values
«Ä0.011, hÄ1.864Ã10À9 m, nÄ0.3, and HÄ100 m.
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form the disturbance associated with the propagation of the t
moelastic Rayleigh waves. This was made possible by using m
tiple Laplace transforms, asymptotics, complex-variable the
and certain results for Bessel functions. The dependence of
normal displacement associated with the Rayleigh wave upon
distance from the source epicenter and the distance from
wavefront was also determined.

Appendix A
The solution of the 12312 algebraic system of Sec. 3 reads

X152kQV1e22a2HpS 2~e2a2Hp2e22~a12a2!Hp!a2M 2TE

1S e2a2Hp1e22~a12a2!Hp22
M 2

M 1
e2~a12a2!HpDa1M 1TE

1~e2a2Hp1e22~a12a2!Hp!D D Y ~BA!, (A1)

X25kQV1S 2a2e2~a113a2!HpF22e2a2Hp1~e~a11a2!Hp

1e~a113a2!Hp!
M 2

M 1
G•M 1TE1e22a2Hp~~21

1e2a2Hp!M 1a1TE1~11e2a2Hp!D ! D Y ~CA!, (A2)

X3522kQV1bqTe2~a11a21b!Hp~a1ea1Hp2a2ea2Hp!~Tq

1w2!/~FA!, (A3)

X452kQV1bwTe2~a11a21b!Hp~a1ea1Hp2a2ea2Hp!~Tw

1q2!/~FA!, (A4)

X552
kQV1

2a1m2p~M 12M 2!
52

kQV1

B
, (A5)

X652kQV1e2~2a11a2!Hp$a2ea2HpM 2TE1a1~~ea2HpM 1

22ea1HpM 2!TE!1ea2HpD/~BA!%, (A6)

X75
kQV1

C
, (A7)

X85kQV1e2~a112a2!Hp~a2~2ea2HpM 12ea1HpM 2!TE

1a1ea1Hp~M 1T~2E!!1ea1HpD !/~CA!, (A8)

X95X1050, (A9)

X11522kQV1bqTe2~a11b!Hp~2a21a1e~a12a2!Hp!~Tq

1w2!/~FA!, (A10)

X1252kQV1bwTe2~a11a21b!Hp~2a1ea1Hp1a2ea2Hp!~Tw

1q2!/~FA!, (A11)

where

A5~a1M 12a2M 2!T~TqTw2q2w2!14a1a2b~M 12M 2!

3~q2Tq12q2w21w2Tw!, (A12)

B52a1m2~M 12M 2!p, (A13)

C52a2m2~M 12M 2!p, (A14)

D54a1a2b~M 12M 2!~q2Tq12q2w21w2Tw!, (A15)

E5TqTw2q2w2, (A16)

F5m2p. (A17)
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Appendix B
Considering the ratioR of the fluctuation amplitudes of the firs

and second terms in~51!, we obtain

R5
zRl R

1/2

uaR2u
expS v

r
HF l R

1/2 cos~u/2!2
uaR2u

zR
G D . (B1)

We will examine this ratio and conclude thatR takes on very
large values in the entire range ofv provided that the distance
from the epicenterr is much greater than the thermoelastic ch
acteristic lengthh. The lengthh is very smallfor most materials
@h5O(10210 m) as mentioned in the main text of the paper# and,
therefore, the requirement (r /h)@1 does not pose any seriou
limitation. Similarly to the case of Eq.~21b!, any choice with, say,
(r /h)>100 leads to a reasonable approximation. To cover
entire range ofv-values, we discern the following possibilities:

~1! Considering (v/r )→0, Eqs. ~49c! and ~49b! provide
the results lim(v/r )→0 tanu5`, lim(v/r )→0 ,R

1/25` and
lim(v/r )→0 cos(u/2)5221/2. Then, we find that
lim(v/r )→0((v/r )H@ l R

1/2 cos(u/2)2(uaR2u/zR)#)50 and
lim(v/r )→0 R5`.

~2! Considering (v/r )→`, Eqs. ~49c! and ~49b! provide
the results lim(v/r )→` tanu50, lim(v/r )→` ,R

1/251 and
lim(v/r )→` cos(u/2)51. Also, from ~36! and ~49a! we may infer
that (uaR2u/zR),1. Then, working as in the above case, we fi
that lim(v/r )→` R5`.

~3! Consideringv5O(r ), Eqs.~49c! and~49b! lead us to con-
clude that tanu and,R

1/2 takes on very large values. Consequen
it is cos(u/2)>221/2 and by~B1! it is seen thatR takes on very
large values in this case too.

Finally, we note that a numerical evaluation of the two terms
~51! showed that the amplitude of the first term is, at minimu
about 20 orders of magnitude greater than the amplitude of
second term.
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