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1 Introduction the same problem studied here and provided an evaluation of the

A class of interesting problems of thermomechanical wave m 9mp|¢te field at the §urface. This field comprises thermoelastic
ilatational and Rayleigh waves, and elastic shear waves. How-

tions arises from the action of a thermal source in a conducti %er the latter studv relies much upon numerical analisilv-
and deformable body. The source can be situated either on fs " y P Ysia

S . - . INng numerical wavenumber integrations and numerical Laplace-
surface or inside the mediufburied sourcg Typical problems of : : . X
. : . I . . transform inversions and does not furnish an analytical
this class involvefi) laser action(impulsive electromagnetic ra- . . .
o : expression for the evaluation of the surface displacements. In-
diation) on a surface targesee e.g. Morlandi1], Sve and Mik- . i . - .
. . stead, our aim here is to provide a simplesed-formexpression
lowitz [2], Bechtel[3], Hetnarski and IgnaczdKk], and Royer and . . . ) .
- o for the Rayleigh-wave disturbance without using any special nu-
Chenu[5)), (ii) underground nuclear activit{zee e.g., Bullen and ! ; . . . .
I . merical technique. This was made possible by using asymptotics
Bolt [6]), and (iii) friction developed during underground fault : .
i T o ! and certain results of complex-variable theory and Bessel func-
motions related to seismic activifgee e.g., Kanamori et dl7]). . i o .
. tions in addition to the basic integral-transform analysis of Ref.
In many cases, these problems can be viewed as a thr

dimensional(3D) situation involving a thermoelastic half-spac ﬁ]lleiThhe-vxll(ae\ye |di?esusbe d olzte:?nail:?nganexaplIclt)irnfata;pgg?r;ag?ethzf
under either a surface or buried heat source. This situation is st Y'€ld P y 9 pp

ied here by employing the coupled inertial thermoelasticity theort}/aylelgh function that exhibits no dispersion but still depends

of Biot [8] (see also AchenbadB)). In particular, we focus atten- pon the_thermoelastic constants. Notably, th_is_ approximate form
tion on the surface disturbance of the Rayleigh-type and providésggsgg'S:S”a’lt\éery close to the exact one giving therefore very
closed-form expression for the associated displacement field. i '

deed, past experience with pure mechariical, without any ther- It should be mentioned that most of the studies published before

mal effect$ versions of the present problem indicates that thlc()en wave propagation induced by sudden heating model the prob-

h . . . éms asone-dimensionalsee e.g., Boley and Tolingl3], and
Rayleigh-wave disturbance is tlimminantone over the surface Hetnarski and IgnaczaKi4]), employuncouplecthermoelasticit
after a certain timésee e.g., the 2D analysis of Gan\itO] in- 9 » Employ P Y

volving a buried dilatational source in a half-plane and the 3|(j;ee e.g., Sve and Miklowit2]) or treat onlylnflnlte domains,
) ; . ) . . r.e., full spacegsee e.g., Predeleahi5], Fleurier and Predeleanu
analysis of Pekeris and Lifsofl1] involving a buried concen-

trated vertical force in a half-space [16], Sharp and Crouchl7], _and Manolis and_Beskd[dS,lSZ_).
; Also, some of the aforementioned works consider the special case
We should mention that a recent study by the present auth

orfs . .
- e . of a time-harmonicresponse. On the contrary, the present stud
and Brock(Lykotrafitis, Georgiadis, and Brockl2]) dealt with . >PC ; Y P Yy
aims at a more realistic formulation of these problems and is
I whom correspondence should be addressed. the_refc_)re based on the t_ransne_nt coupled mertlal thermoelasticity,
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gonekb)é zmong Og‘g& At_kigz%]n Snd Isra%@g: qucg_g% vector, 9=T—T, is the change in temperaturg,is the current
rock, Rodgers an eorglaqisol, Srock ana eorgiadi » tem eraturei’ is the initial temperaturey is the heat-flux vector,
Georgiadis, Brock, and Rigatp28], and Georgiadis, Rigatos, and()\,lg are the Lame constantsf is theea:oefficient of linear ex-
Brock [29]' Elnally, within the context of a dlﬁgrgnt theory, ansion,p is the mass density, is the specific heat at constant
namely inertialess and uncoupled thermoelasticity, solutioasormation,s( ) is the Dirac delta distributiont is the identity
for thermally activated surface displacements in a half-space WEIR <or V is 'the gradient operator, ard2=(2/9x2) + (92 ay?)
obtained by Barbef30] and Barber and Martin-Moraf81]. +(0%/9z%) is the Laplace operator. All field quantities above are

functions of &,y,z,t).

2 Problem Statement In addition, zero initial conditions are taken, i.e.

Consider a 3D body in the form of a half-spaze —H (see u=du/dt=0=0 for t<0 in (—o<x<om, —wy<o,
Fig. 1) which is both thermally conducting and deformable. The
body is initially at rest and at uniform temperatufg. At time t —H<z<), ®)

=0, a thermal source acts at a point situated at a depielow ) )

the surface. This point of the half-space is taken as the origin @d we also assume that the half-space surface H is traction

the Cartesian coordinate systemy(,z). A concentrated thermal free and insulatedi.e., no heat is conducted through the half-

source having an impulsive time variation is assumed, with ttf@ace surface and aifinally, the pertinentinitenessconditions

understanding that the solution of this probléBreen’s function at remote regionignaczak and NowackB4]) state that the field

or fundamental solutioncan be integrated in space and time t&! infinity remains bounded although temperature signals travel—

give then the solution for any general thermal loading. Also, trccording to Biot's theory—at an infinite speed. _

source has an intensit¢Q, whereK is the thermal conductivity ~_ The objective of the present work is to determine the vertical

with dimensions ofpowen(length ~(°C) %, °C means degrees of displacement at the_ surfacc_e for the _problem de_s_crlbed by

temperature an® is a multiplier expressed it?C)(length(time).  Eas.(1)—(5). The solution of this problem is greatly facilitated by
Then, according to the linear, isotropic, inertial coupled thefémoving the source term i) and considering this term as a

moelasticity theory(Biot [8], AchenbacH9], Chadwick[32], and discontinuity along aimagined planeat z=0. This strategy was

Carlson[33]), the governing equations for this problem are writintroduced first by Pekeri35] (see also MiklowitZ36]) in treat-

ten as ing the pure mechanical problem of a half-space under a buried
vertical force. Considering thus an imaginary plane alarg0
o=pu(Vu+uV)+A(V-u)l— k(3N +2u) 61, (1) that separates the original half-space into the half-space 0O
< (region 1 in Fig. 1 and the strip—H<z<0 (region 2 in
g=—-KV@, (2) Fig. 1), we write the pertinent continuity and discontinuity condi-
tions atz=0 along with the standard boundary conditions at
(92U 7= — H
MV2U+()\+,LL)V(V-U)—K0(3)\+2/,L)Vt9=p—2, (3)
A uD(x,y,00=u?(x,y,00), (62)
) a0 ~ d(V-u) 1 2
KV20—pe,—— ko(3\+21) Ty—— oM (x,y,00) =62 (x,y,01), (6b)
+KQ- () 8(x)- 8(y)- 8(2)=0, 4) o (x.y.00) = (x,y,00), (60)

where (1) is the Neumann-Duhamel law2) is the heat- 1) 2)
conduction Fourier law,(3) is the displacement-temperature 90 (x.y.08) 907 (x.y.08)
equation of motion, an@) is the coupled heat equation. Also, in Jz Jz

the above equationgr is the stress tensou, is the displacement

=Q-4(t)-8(x)- 8(y), (6d)

a,i(Xy,—H,t)=0, (7a)
a6(x,y,—H,t)
———=0, (7)
z=-H where —o<x<w, —o<y<w, (j=X,Y,z), and the superscript
in parentheses 1 or 2 attached to a field quantity means that the
planez=0 is approached as—0" or z—0", respectively.
In this way, the original problenil)—(5) and(7) is equivalent
z= to the problem described bfl)—(3) and (5)—(7) and with the

y equation KV20—pc,(96/t) — ko(3N+2u) To(d(V -u)/dt) =0
replacing now Eq(4). Further, a convenient normalization is per-
formed allowing the two field equations of the probl¢e., Egs.
(3) and(4) with no source termsto take the form

“1”
z
2 2 2 d%u
Vau+(m—1)VA+«kVH—m —220, (8)
Js
29 K (90+8<9A_0 ©
2 - 1
Fig. 1 A thermally conducting and deformable body in the m hn? ds  h s
form of 3D half-space under the action of a buried (H#0) or ) ) ) ) ) )
surface (H=0) heat source wheres=V,t is the normalized timéwith dimension of length-
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Vi=[(N+2u)/p]*? is the dilatational-wave velocity in thab-

senceof thermal effects(i.e., within the “pure” mechanical @(le,ZYS)Z(l/ZWi)J d(x,y,z,p)-ePdp, (100)
theory, k= —ko(3N+2u)/ = ko(4—3m?) <0 is the normal- B!

ized coefficient of linear expansion= (}O/CU)(szlm)z is the and the Qirect transform suppresses the timelike variablehe
dimensionless coupling coefficierit=(KV,/umc,) is the ther- double bilateral transform pair is defined as

moelastic characteristic length,,=(u/p)*? is the shear-wave

velocity, m=V;/V,>1, andA=V.u is the dilatation. As regards N

the range of numerical values thatand h take on, for most <I>*(q,w,z,p)=f f D(x,y,2,p)-e P Wdxdy,
materials the characteristic length is very smfipically h Tl
=0(10m), see, e.g., Chadwidid2]] but the coupling coeffi-
cient can be as high as= 0(10™Y) (e.g.,e=0.36 for Polycarbon-
ate atT,=40°C). The fact thah is very small with respect ts .

for a ra%her Wid)e time-range will be c)(l)nveniently utiliged in the d)(x,y,z,p)z(p/Zm)zfr jr ®*(q,w,z,p)-e” ¥V dgdw
ensuing analysis. 2ns (11b)

(118)

and the direct transform suppresses the space variablgs (In
3 Basic Integral-Transform Analysis what follows, we save a capital letter for the unilateral direct
) i . ) transform, whereas the double bilateral direct transform is denoted

This section essentially reproduces relevant material from Oy an asterisk. It is also noticed thadan der Pol and Bremmer
recent related workLykotrafitis, Georgiadis, and BrocKl2)). [37)). (1) Because of Lerch’'s theorem for the uniqueness of
This material is briefly presented here for the sake of completgpjjateral Laplace transforms and because of the existence of
ness and because of the need to introduce certain definitions. K\jjider’s inversion formula for reap, it is sufficient to view
also emphasized that although the form of conditi®)sand (7) ¢ (x,y,z,p) as a function of aeal variablep over some segment
suggest existence of an axisymmetric f|eld,_ the basic integrak the real axis in the half-plane of analyticity. Ondgx,y,z,p)
transform analysis presented here is appropriate for more geng&ietermined as an explicit function pfin the course of solving
nonaxisymmetrisituations. This is why we do not use the Hankejhe transformed differential equations, its definition can be ex-
transform below. Certainly, the fact that we deal with an axisymanged to the whole complaxplane, except for isolated singular
metric field in our specific problem will emerge in the course O[.f)OiI"ItS, through analytic continuatiof2) The variablesy andw
solving the problem. , . should be treated asomplex (3) The integration pathl’;,

The dependence of the problem on the variabbey,6) is \ith (j=1,2,3), is a line parallel to the imaginary axis in the
suppressed through the use of multiple Laplace transfds®e ggsociated transform plane and liesithin the region of
e.g., van der Pol and Bremm[g7], and Carrier et al[38]). The analyticity.
unilateral transform paifdirect and inverse transfopnis defined Applying now (10a) and (11a) to the governing equationd),
as (8), and(9), and considering5) yields the following general ex-

pressions for the transformed temperature change, displacements
® and stresseg@letails of this procedure are given in Appendix A of
CD(X’y’z'p):f ®(X,y,z,5)-e Psds, (10a) Ref. [12]). These exprgssions are, of course, different in the re-
0 gions 1 and 2 of the original half-space.

(a) Region 1 (6<z<®):

] |

K
_®* . o

m?2 M. M_ 0 0

] —-q —q 1 0

PUy -w  -w 0 1 00 0

pUz r —pa;z
1 a, a3 % 9 0 0 o
_E:y B B Xze pa-
M X.e~PBZ

—2qw —2gqw w q 0 0 0 O 3
iE* X4e_pBZ
xz | = T w 12

M 2qa, 2qa. --* Y 9 0 0 o0 0 (12)
Ly B B 0
Y w T

| owa, 2wa 9 _1a 5.9 0 0 0
o B B L 0
M Tus T 2q 0

;E;y T+ Too 0 2w

1, L T -T -2 -2w 0 0 0 0

_Ezz

| | |

Journal of Applied Mechanics JANUARY 2005, Vol. 72 / 131



(b) Region 2 H<z<0):
[ ] |

K
— 0O m L
m2 M, M, M_ M_ 0 0 0
pUX —q —q —q —q 1 0 1 0
U*
p y -W —W -W -W 0 0 1
py; - -
_ —w w pa,z
1_, —-a. a, —a_ a_ 4w d — X5e_pa ,
;S‘xy B B B B Xg€ *
a_z
1 —-2qw  —2qw —2qw —2qW W q w q X7e”
—3* T T Xgefpa,z
Xz | = —W - w 13
K -2g9a, 2qa, —2qa. 2qa. @— W Zw W9 XoePh? (13)
iz* B B B B Xloepﬁz
yz i
M -w T w -T ppz
—2wa, 2wa, -—2wa. 2wa_ —wa g w4 ~Tq ) Xye 0pz
Zsx B B B B || X PP
fl‘ Tos Tos T T 2q 0 2q 0
;E’;y Tq+ To+ Tq- Tq- 0 2w 0 2w
iz* L T -T -T =T —29 —2w —29 —2w]
,LL zz

where®* is the multiply-transformed change in temperature, ansranch cuts will enable the proper definition of the regions of
(Ux.,Uy ,U7) and €j,.2),...23) are the multiply- analyticity of various functions appearing in the analysis.
transformed components of, respectively, the displacement vectofl he quantitiesn, andm_ arep-dependenfrecall thatp is real
and the stress tensor. We should also notice that sol@inis ~and non-negative whereasm is constant. From their definitions,
bounded az— o appropriately satisfying thus the finiteness conthe following inequalities follow:

ditions, whereas such constraints need not be imposed on solution

2 _
(13). In the above equations, the yet unknoXnp, X,, ... X, m_<m.<m for hp>m (1+e)—-1 (20)
are arbitrary functions ofd,w,p) which have to be determined - + m?(m?—1) '
from the boundary conditions in each specific problem. Also, the
following definitions are employed ifl2) and(13): m?(1+e)—1
m_<m<m, for hp<——F———. (200)
a.=(m2-g’-w’)'?, (148) m(m"—1)
In addition, useful approximations for the quantities and
(2 42— \w2) 12 A . ;
B=(m"—q°—w") (140) " m_ can be obtained frortL5) by takings— (1/p), whensis very
2 112 2 112 small or very large, and by performing series expansion and keep-
m :E 1+ 1 4 & +l _ 1 " & ing the dominant termgsee e.g., Carrier et aJ38] for similar
2 (hp)¥2 hp| —2 (hp)*2 hp| ' procedures The following approximate forms considerably sim-
plify unilateral Laplace transform inversions
—m2— 1 S
M.=m:—1, (16) m,=1 and m_= o for ﬁ<1, (21a)
T=242—m2=m?—2(q?+w?), (17a) (hp)
1+e\12 S
T.=2a% -m? (170) m,=|—— and m_.=—— for —>1.
hp (1+&)¥? h
Tqe=T.+20% (189) (21b)
T . =T.+2w? 18 Notice that validity of(20a) or (20b) is necessary but not suffi-
wE s (180) cient for, respectively, the validity d21a) or (21b).
T=T+ a2 (19) Finally, it turns out that the case i20a) is rather impractical
since it corresponds to axtremely smalinitial time interval of
T,=T+w2 (19%) the process, which for most conducting materials tis

<O(10 *3s). This is found by taking— (1/p) for very smalls

5 ¢ (i.e., for very small timg¢ In the present study, information is
+w* allowing the placement of necessabyanch cutsfor the needed generally for longer times so we shall focus interest only
functions a.=a.({,p)=(m>-¢?)Y? and B=B({)=(M?> on the casé20b) and employ(21b) appropriately. Any case with,

— %2 These restrictions in thé&plane are in accord with the say, 6/h)=100 leads to a reasonable approximationrfor. The
chosen solution forms ifL2) and(13). For the representative caseresults in(21b) are indeed robust because the normalized time is
of B(¢), Fig. 2 depicts these branch cuithe cuts are situated scaled by an extremely small lengithe thermoelastic character-
outwards with respect to the origif=0—a similar situation exists istic length.

for the functionsa..(Z,p)). In this way, it is Rea, =0, Rea_ Now, transforming via (10a) and (11a) the continuity/
=0, and Rg3=0 in the cut plane. Also, we record here the twaliscontinuity conditiong6) and the boundary conditiong), in
possible arrangements af, , m_, andm with respect to their view also of the general transformed solutigh®) and(13), leads
magnitude. This information in conjunction with the placement db a linear algebraic system of 12 equations in the 12 unknown

Further, a new complex variablgis defined through’>=q?
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iIm() axisymmetricnature of the problem, a fact that will become evi-
dent in the ensuing procedure. Finally, of central importance to the
solution for thesurfacedisturbances is the functioD, which is

+pl associated with waves of Rayleigh type. This is given as
D=D({,p)=a_M_R,—-a,M,R_, (23)
+ilBl 1Bl where the functions
= == Re() _ 2 2
-i [l -m +m +i|p| Ri=R.({,p)=4{"a, p+T7, (249)
R_=R_({,p)=4{%a B+T?, (24p)
+Bl can be identified as thtaermoelasticcounterparts of the nonther-

mal pure-elastic Rayleigh functiaitransformed function which

is given asR®®=4/2aB+ T2, with a=a(¢)=(1—¢%)*? and

) ) ) B=pB({) given as beforésee e.g., Achenbad¢B], Miklowitz [36]).

Fig. 2 Branch cuts for the function ~ B(y)=(m’—¢*)"? in the  Contrary to the latter cas®, and R_ exhibit a p-dependence

complex [plane. Similar branch cuts, emanating from the showing therefore that the thermoelastic Rayleigh waves in the

points - m..(p), are aiso inroduced for the functions  a.(&)  pnysical spaceftime domain are dispersive. However, it was

=(me=8)™ shown in the study of Georgiadis, Brock, and Rigaf?8] that
generally the thermoelastic Rayleigh-wave velocity varies only
slightly with time, a result explained in view of the fact that while

X1, X5, ... Xq5. Obviously, an exacti.e., symbolicaland not there is a strong shear contributiGmhich remains unaffected by

numerical solution to the system is sought here and this wakermal effects to the Rayleigh waves, the dilatational part of

made possible by using MATHEMATICA™. The expressions fothem is very weaksee e.g., Viktoroy42]). We will take advan-

X1, Xz, ... Xqp are given in Appendix A. tage of this result immediately initiating the asymptotic consider-

Having available the solutionX,X,, ... X;,) and therefore, ations to obtairu,(x,y,z= —H,t).

by (12) and (13), the general expressions for the double trans- |t will be shown, indeed, that the functidd can be expressed

formed temperature, displacements and stresses allows determinerms of anapproximateRayleigh function that exhibitsio

ing the field quantities at any point of the original space and at agyspersion(i.e., this Rayleigh function does not contain the time

time instant through successivmversionsof the type(11b) and  transform variable) but still depends on the coupling constant

(100). However, we emphasize at this point that a treatment eMihe approximate form of the functidd itself will exhibit depen-

ploying the Cagniard—deHoop techniqi#36,39 to accomplish gence upon the thermoelastic constantsh] and the transform

the transform inversions in an exact manner seems to be impQgriables ¢,p). First, one may write fronf23) and (24) the fol-

sible due to the very complicated multiple transformed solution igwing expression for the functiorD(a. ):

the present problem. In the simpler buried-source problems of

non-thermal type such a difficulty was not met and the Cagniard—

deHoop technique had successfully been appkeé e.g., Pekeris

[35], Garvin[40], and Paytori41]). Indeed, we note that, after the

appropriate contour integration involved in the Cagniard—deHodfow, the terms ¥ _ /M, ) and[(a_M _)/(a; M ;)] in the above

technique, the integrand in the semi-infinite branch-line integr@xpression, in view of14a) and(16), are written as

tion is still p-dependent and, therefore, the unilateral transform

a_M_
——1). (25)

+ 2
M|

b 42 M(NL 1
Z—é"afﬁ My

inversion is impossible to be carried out exactly through the stan- & _ m? -1 (26a)

dard inspection procedure. For more details on this difficulty, we M. mi_l

refer to the work by Georgiadis et §R9], who treated the coun-

terpart 2D problem and employed approximationat a similar and

point of the analysis. Their asymptotic approach is, however, dif- 2 o2

ferent than that employed hefsee Sec. 4 below a_M_  (mZ—79)""mZ-1 60
We close the presentation of the basic integral-transform analy- a M, (m2—¢2)Y2m2 -1 (260)

sis by noticing that if, instead of(t), a general dependence from
time of the thermal loading it4) is to be consideretdenoted by Further, when ¢/h)>1, use of the expressions for, andm_ in
an arbitrary functiorg(t)), then the quantitQ in the equations of either(15) or (21b) lead to the results

Appendix A has to be replaced byQ(V;)-G(p), where G(p)

denotes the unilateral Laplace transform of the function M <1 (27a)
g((s/Vy)=t). +
] ) ] and
4 Transformed Solution and Asymptotic Consider-
ations a M- <1. (2M)
a,M.

In what follows, we focus attention on the evaluation of the
vertical displacement at the surfaggx,y,z=—H,t). In view of To give a numerical estimate, we obtain values of the ratio
the previous results, the multiply transformed displacemepta_M _)/(a,M,)] for different p's (recall thatp is the time

U (gq,w,z=—H,p)=U3({,z=—H,p) is given by Laplace-transform variable The constants of a model material
" y utilized in the present study to derive numerical res(dee Sec. 6
Ta,e?Pl-a e below) are employed. These constants are0.011, h=1.864

* — —
Uz ({z=—H.p)= KQVlE D(Z,p) + 220 %107°m, and Poisson's ratio=0.3[which gives a ratio of wave
] ~ velocitiesm=(V,/V,)=1.8708]. Also, we také&= (g, which is
where the functiona.. (£,p) anda_({,p), and the complex vari- the value corresponding to the arrival of the Rayleigh
able  have been defined before. Also, frditi7a) and the defini- \avefront—see Eq36) below and which for the model material
tion of £, it is T=m?—2{2. One may notice that the very defini-is calculated to be&gr=2.0162. Then, the following values of the

tion of the variable¢ and the form ofU} in (22) exhibit the ratio in question are obtained:
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[(a_M_)/(a;M,)]=—1.73840< 10" for p=1C?, ization through the use of Cauchy’s integral theor&me e.g.,
s Achenbach 9], Carrier et al[38], and Ablowitz and Fokap43])

[(a-M_)/(a,M,)]=-151502¢10"** for p=1C", allows writing

[(a_M_)/(asM,)]=—4.79091x 10" 2 for p=10"°,

which clearly show that for increasing tinfiee., decreasing) the
ratio rapidly diminishes and can practically be taken equal to zengshereS* andS™ are analytic functions in the overlapping half-

s=s*.s, (33)

The same applies to the ratid(_ /M ) as well. planes Re)>—m_ and Re{)<m_, respectively. These are given
Then, (27) allow writing (25) under the following approximate by
form:
D s*(7)— 1fm o] 402l do ]
A = M(4fa g, (28) (=exp =7 | arctan — | 5z @4
and, sincan, >1 for (s/h)>1, one may further obtain in view of where
(16)
D a_=a_(w)=(m?—-w?)? (35a)
—=-m?(4%a_B+T?), (29)
& B=B(w)=(m*=w?)"> (350)
where in the last two expressions and, also, in what follows the
quantitiesm, andm_ assume the formtaken from(21b)] Further, one may observe fror84) that S™({=0)=S"({
1 112 =0) and, thereforeS(£=0)=[S"(£=0)]%. Now, we exploit the
m. = te (30a) latter observation by taking=0 and also take into accou(82)—
- hp ’ (34) to obtain the followingexplicit formula for the root of the
1 function (D/a.). This root defines the speed of thermoelastic
m = . (30) Rayleigh waves
(1+¢)"? ,
Finally, in view of the above, Eq29) becomes (r= m (36)

2 2 \112. qtr—0)
D 14s [2(m?—m?)]*2.5%({=0)

a,  hp

(Mm?=27%)2+47°

1/2
L_ 4‘2 (m2_ §2)1/2
1+¢ It is noticed, finally, that the inequalityn<{g always holds.

5 Inversion Procedure and Solution in the Physical
SpacéTime

H_thherm (31)
hp '
where the symboE means equality by definition.

In the above result, the approximate Rayleigh functidpf™ ] o . )
exhibits no dispersiorii.e., it does not depend upgm but de- In view of the definition(11b), one can write the unilateral
pends upon the coupling constan®ll the above approximations Laplace transformed vertical displacement in the form
will I'[])roperly be utilizedd below. . ) DreC) p \2 [+ [+ie

The next step is to determine the zeros of the functdra(, ), _ _| P * _
which is given in(31). This information will be utilized later in Unxy,2= H,p)_(zm J:ix J_ix Uz (q,w,z=—H,p)
the inversion procedure. By invoking the principle of the argu-
ment(see e.g., Carrier et 4138, and Ablowitz and Foka43)), it -ePPePMdqdw, (37)
can be shown that the two real zergs = (g of the function
(D/a,) are the only zeros of this function in the entifglane. whereUJ is given in(22). Next, axisymmetry(circular symme-
These correspond to axisymmetric thermoelastic Rayleigh wauey) of the problem will become clear and be exploited. To this
fronts propagating with a velocityg=V, /(g along the traction- end, we sej=ioc andw=ir so that{?=qg?+w?= — (c2+ 7?)
free half-space surface. Working with repl such thatp>0 =-p2 and further consider the polar coordinates®) and
[which, of course, is necessary for the convergence of the integfglg) defined through the relationg+iy=re'? and o+ir
defining the unilateral Laplace transform in Egj0a)] in the case = ei®, The first set of polar coordinates refers to the physical
of interestm_<m<m. [cf. Eq.(200)], we can obtain a closed- pjane ,y), whereas the second set to the transform plane.
form expression for the roalg by utilizing factorization opera- considering also the case=0 andy=0 (which, as will become
tions of the kind encountered in solving Wiener—Hopf equationgear soon, does not impose any restriction to the solytiiin
(see e.g., Achenbac®], Carrier et al.[38], and Ablowitz and ghould be Ino)=0 and Im(9)=0, whereagp=(02+ 72)¥2=0.
Fokas[43]). The function D/a.) is analytic in the-plane cut Now, in view of (22), (31) and the newly introduced polar
along the interval ih_<|Re@)|<m, Im({)=0) and behaves like .oodinates. we obtain
2m? (m?=m?)¢? {with m,=[(1+&)/hp]*?> and m_=(1 '
+¢)" Y2 as|{]—o. Consequently, an auxiliary functio®() is U,(r,6,z=—H,p)
introduced through the definition

kQV, (*[ (?7a,Te a-HP—a Te a+HP
SR (32) ot U o0
2m? (mP—m?) (£~ R’ o |
which possesses the desired asymptotic prop&(§)—1 as xexy —inro-cod d—9))dd | od 38
|{|— and, additionally, has neither zeros nor poles indimane. P=iprp-cos¢=9))dé | pdp, (38)

The only singularities of are the branch pointé==m_ and{

=+ m [which are shared with the original functioB(a.)], soit and further, by observing that the inner integral(38) is actually

is single-valued in thel-plane cut along the intervaln{_ independent on the starting limit of the integration interval, we
<|Re@)|<m, Im()=0). Then, the standard technique of factoreliminate the variable) from the problem and get
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U,(r,0,z=—H,p)

KQVl
472

a,Te a-HP—g_Te a:HP
D(p,p)

Il
2m
xf exp(—iprp~cos¢)d¢)pdp

0

_ «kQV;
T 27

“a,Te d-HP—g_Te a:Hp
Jo(prp) - pdp.

0 D(P.p)

(39)
In the above relation, we hava.=(m2+p?)2 B=(m?
+p?) Y2 T=m?+2p?, and

l+e(1+e N [ 1
D(p,p):——hp hp +p (M*+2p%) "= 4p% 1
12 1l+e[1l+e 12
2 2 23172 — _ 2 therm
+p°] (M=+p%) } hp | hp +p) R™Mem

(40)

while the following standard result for the Bessel functityf )
was usedsee e.g., Watsop4])

1 2w
ZL exp(—iprp-cos¢)dé=Jo(prp). (41)

One may observe that the last integral(89) is but aninverse
Hankel transform(see e.g., Bracewel[l45]). This confirms the
circular symmetry of the problem.

Next, another change of variable defined by setting prp

uy®™(r,z=—H,s)

_ 1 1

A (me-m? )

a_
i (e’aprf a—e’a+Hp)T

fx f + e"sdp
0 °’i“mi(p*ipR)(p+ipR>-S(i3)
pr
X wJg(w)dw, (44)
where
1+s|%21
=) o (45)
1
:—(l+s)1/2p Y-, (4%0)
h 1/2
= w)=| p+r ———?] 46a)
Y+=7+(p,w) p (1+8)r2“’) (469)
(1+¢) 172
y =y (po)=|p*+—;5 wz) : (460)
and
w
pRZQ- (47)

Notice that the branch cuts depicted in Fig. 3 should be intro-
duced to render the functions, andy_ single-valued. Also, the
constantc in the inner integral of(44) is taken slightly greater

leads to the following expression for a normalized expression @fan zero since atsingularities (poles and branch pointef the
the unilateral Laplace-transformed vertical displacement at t@grresponding integrand are situated in the plang)Red. Spe-

surface

U™y z=—H,p)=— ——
2 P) 2(m?—m?)r?

a_
e—a,Hp_ a_e—a+Hp)-|-

e
T

2
m 22+gR
pTr

)
X—zJo(w)dw, (42)
p

whereU?°™=(27U,)/(kQV;), and the symbola, , a_, andT
take the following formgwhich, of course, follow from the defi-

nitions in (14a) and(17a) and the several changes of variable in

the previous analysjs

(1)2 1/2 (,()2
—m?2
?> , T=m +2p2r2. (433,b)

a.=|mi+
pr

Finally, we consider the inverse unilateral Laplace transform in

cifically, these singularities include the polestaitpg, the branch
point —hw?((1+¢&)r?) 1 for the functiony, , and the branch
points =iw(m_r) ! for the functiony_ (see Fig. 3.

With the above results available, we now focus interest on the
thermoelastic Rayleigh waves. As is well-knosee e.g., Chao
et al.[47], Achenbach 9], and Miklowitz [36]), analytically the
Rayleigh-wave effects correspond to the contributions from cer-
tain poles in the integrands of the inversion integrals. Indeed, in
our previous analysis we were able to make explicit the appear-
ance of Rayleigh-wave polgsf. Eq. (44)].

We proceed now to evaluate the pole contributior{4d) ob-
taining therefore an approximate solution for the thermoelastic
Rayleigh-wave signals along the half-space surface. Care should
be exercised, however, in evaluating the functiangp,») and
a_(p,w) at the pointstipg, which lie along the Bromwich path
(c—iw,c+iw) (see Fig. 3 The following results are obtained:

(10b) and, further, interchange the latter integration and the inte-

gration in (42). This is permissible since the integral {40b)

convergesuniformly within its region of convergence in the com-

plex p-plane [37]. Cf. Miklowitz [36] and Markenscoff and Ni

a,=TFi{plHFexp=ioN), (489)
a_=7ilag_| at p==ipg, (480)
where
ag_=(m2— %)% (4%)
{r=(1+tar? 6)*?, (4%)
rang— (I+e)r (4%)
hZrw

[46], e.g., for similar interchanges of the integration order in muffhe symbold in the above relation&lenoting an angle in Fig.)3
tiple transform inversions. In this way, we obtain the normalizeghould not be confused with the symbol used earlier to denote the

vertical displacement at the surfaa€’™=(27u,)/(«kQV,), in
the physical space/time

Journal of Applied Mechanics

change in temperature. Thed4) provides the following expres-
sion for the disturbance due to the thermoelastic Rayleigh waves
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ilm(p)T 6 Numerical Results, Further Asymptotic Results, and
Concluding Remarks

Numerical results from the previous expression are obtained
easily through the use of MATHEMATICA™ for both numerical
integrations and symbolic manipulations involved. A model mate-
+ip, rial was considered to derive the results shown in the graphs of
Figs. 4 and 5. It is characterized by the following constants: cou-
+Hly.l P9 ||+ Re(p) pling constante=0.011, thermoelastic characteristic length
KN VK P} =1.864¢10 °m, and Poisson’s ratie=0.3 [this value gives a

ratio of wave velocitiesm=(V,/V,)=1.8708]. The graphs
-ipg present the variation of the normalized vertical displacement
ul™=27u,(kQV,)"1 with the normalized time V,(r?
-io/(m_r) +H?) Y%, In Fig. 4, the case=10H is considered, whereas in
Fig. 5, both cases=40H and r=160H are presented. In all
-ily | casesH =100 m is taken but a numerical inspection showed that
| the shape of pulse does not change appreciably if normalization is
utilized (the displacement itself becomes larger for smaller
] ] depths.
Fig. 3 Branch cuts for the functions  y.(p,@) and y_(p,®), 'Fl?he graphs show the generation of the thermoelastic Rayleigh
and the Bromwich path in the complex  p-plane wave at the half-space surface. We notice that as the distance of
the observation station from the epicenter increases, the shape of
the Rayleigh disturbance appears to become sharper because of
A (= the contraction of the real time scale with the increase of the
U™, z=—H,s)=— _2f f(r,H,w,8) 0-Jo(w)dw, length (>+H?)" Also, as the observation station moves away
r<Jo from the epicenteiglecayin amplitude occurs after a certain point.
(50) This attenuation is due to the 3D geometry of the prob(see for
analogous nonthermal situations in Pekeris and Lifgkij, and
Achenbach9]). On the contrary, the latter result is not encoun-
w|ag_|H S tered in the respective 2D problem of a nonthermal buried dilata-
§—Rf) S(Q) tional source treated t_)y_ Garvirio], v_vhere once the Rayleigh
pulse takes its shape, it is not decaying.
|aR,|exp< _ ?é’é’zH cog 0/2)) B In the sequel, we further investigate the behaviouf™(r,z

+ilyl

+iew/(m_r)

where

f(I’,H,w,S)=eX[{—

=—H,s) atlarge distances from the epicenter, i.e., forH. In
- this case, it is (?>+H?)Y?=r and the normalized vertical dis-

g €1/2
R¥R placement takes the form
x {’”S o (w€1’2H 'n(0/2)) (51) X—iY
cos———5—|— Si —vr
rro2 (R ’ ul™Mr>H,z=-H,s)=—AR ,
= ) (r24+X2=Y2r2—j2xYr)32
N m’—2¢% 52) (55)
4 1+‘9) LS(ZR)- (M2—m?) 22 whereX=|ag_|-H/{g and Y=Vgt/r. Takingr>H leads to the
h R /R conclusion that > X and then(55) takes the even simpler form

Further, as the analysis in Appendix B shows, the second term
of f(r,H,w,s) in (51) is negligible with respect to the first term.
Omitting the small term, the normalized vertical displacement be-

comes 1.5E-15 —
A *© (l)|aR_|H - )
u”°”“r,z=—H,s:——f exp{——
2 ) r?Jo LRI LOE-15
< r=10 H
wS p: b
X co§ — | Jo(w)wdw. 53) =
ey £ S0E-16
Finally, evaluation of the integral if63) (Watson[44]) yields }'
the following closed-formexpression for the normalized vertical 1
displacement at the surface due to Rayleigh waves generated k 0.0E+ |
buried thermal source in a half-space s
lag-[H . s i
R
A LRI LRl -5.0E-16
nor _ _ [} I i I I ]
uz"r.z=—H.s)= r2 R lag_|H s \2]32]" L0 15 20 25 3.0 s 40
1+ —i—
[ Lrr {rr ) normalized time

(54)
h is th dial di h . al h Fig. 4 The variation of the normalized vertical displacement
wherer is the radial distance from the epicenter[ Relenotes the UM =270 (kO V;) "L with the normalized time s (r2+H2)~ V2

real part of a complexi function, and th? quantitj‘asaR., andZr indicating the arrival of a thermoelastic Rayleigh wave at the
depend on the material constants. It is also of notice tj3t" station r=10H. The constants have the values £=0.011, h
depends on the ratidH/r). =1.864X10"°m, »=0.3, and H=100m.
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8E-16 — form the disturbance associated with the propagation of the ther-
moelastic Rayleigh waves. This was made possible by using mul-
H 4 —40H tiple Laplace transforms, asymptoti_cs, complex-variable theory
£ and certain results for Bessel functions. The dependence of the
2 AE16 normal displacement associated with the Rayleigh wave upon the
[ . . .
Z distance from the source epicenter and the distance from the
3 wavefront was also determined.
£ T r=160 H
g J ,
Appendix A

oo PP . .
3 V The solution of the 1212 algebraic system of Sec. 3 reads
13
= o
: X;= —xQVle—Za—HP( —(e®-HP—g 22 HP)g M_TE

-4E-16 T T T T T ] M

1.0 15 20 25 3.0 35 40 +(GZa,Hp+e—2(a+—a,)Hp_2_*e—(a+—a,)Hp a,M,TE
N M.
normalized time

Fig. 5 The variation of the normalized vertical displacement +(e?-Hp4 e—2(a+—a)HP)D)/ (BA), (A1)
uP™=27u,(kQV,)"! with the normalized time s(r?+H?)~12

indicating the arrival of a thermoelastic Rayleigh wave at the
stations r=40 H and r=160 H. The constants have the values X,=kQV;

_ —(a,+3a_)Hp
a_e ‘°+
£=0.011, h=1.864X10"°m, »=0.3, and H=100 m.

_ 2e2a,Hp+ (e(a++a,)Hp

+(:‘\(aJr4r3a,)Hp)% .M+TE+efza’Hp((71

+

X—=iYr
ul®Mr>H,z=—H,s)=—AR .
2 ) {(rz—erz—iZXYr)w +e2""HP)M+a+TE+(1+ezaHp)D))/ (CA), (A2)
(56)
In addition, we can investigate the fielear the Rayleigh  Xz=—2«QV;BqTe (272 "AHP(g e2+HP—a e2-HP)(T,
wavefront. To this end, the transformatigp=Vgt—r is used in 2
(56), wherexg denotes the distance from the Rayleigh wavefront, TWIIFA), (A3)
providing X,=2kQV,BwTe B+ FTa-FTHHP(g gaiHp_g gd-Hpy(T
uz""(r>H,z=—H.s) +G2)/(FA), (Ad)
i—i(ﬁ—kl _ kQVy __KQV1 A
A r r 5= 5 = B (A5)
_TIZR X ” 35 2a, mp(M,—M_)
r R . R
*XR(T + 2) —i2X ra +1 Xe=— KQV1e7(2a++a*)Hp{a,ea*HpM _TE+a,((e*""M,
(57) —2e®+HPM_)TE)+e3-HPD/(BA)}, (A6)
Now, by takingr> X andr>xg, we get the following expression kQVy
for the vertical displacement far from the epicenter and, at the =T ¢ (A7)
same time, very close to the Rayleigh wavefront
A i Xg=kQV, e~ (B+F2aIHp(g_(2e3-HPM | —e2+HPM ) TE
u"Mr>H,r>xg,z= —H,s)= - (Sr)l/zRe[(_xR_ix)slz : +a,emHP(M, T(—E))+e*"PD)/(CA), (A8)
(58) Xg = XlO: 0, (Ag)

The above relation reveals that the displacement varies with the,, _ —(a,+B)Hp(_ (a,—a_)Hp
distance from the epicenter as}*"(r>H,r>xg,z=—H,s) K= —2xQVifaTe = (ma-ta.e™ )(Tq
~12 while in the case of a source that is situated very close to +w?)/(FA), (A10)
the surface(i.e., whenxg>X) the displacement varies with the _

distance from the Rayleigh wavefront ag°™(r>H,r>xg, X1,=2kQV;BwTe (@ 18- TANP(~a, et P+ a et TP)(T,
z=—H,s)~xz ¥?. The first of the aforementioned results shows +g?)/(FA), (A11)
that the surface effects attenuate with distance &€, the physi-
cal explanation of which is that the surface waves in our 3
problem are essentially cylindrical wavésee Ref[9] for analo- A=(@;M;—a M )T(TyT,— g’w?) +4a,a_B(M,.—M_)
gous situations in classical elastodynamics

~r

B/here

2 2\p,2 2
In conclusion, the 3D transient dynamic problem of a ther-  <(A°Tq+2a"W +wT,), (A12)
moelast_ic ha_1|f-space under th(_ermal buried or surface loading is B=2a,m3(M,—M )p, (A13)
treated in this paper. The loading has the form of a concentrated
heat flux applied impulsively and Biot's fully coupled thermoelas- C=2a_.m*(M,.—M_)p, (AL14)

ticity is utilized. The problem has relevance to situations involv-

— 2 2\p,2 2
ing heat generation due to, e.g., laser actimnpulsive electro- D=4a,a B(M.—M_)(q7Tq+2q° W +wTy), (ALS)

ma_gnetic rad?at_io)w on a surface_target, underground nu<_:|ear E=TqTW—q2w2, (A16)
activity, and friction developed during underground fault motions.
Here, we were particularly interested in determiningcinsed F=m?p. (AL17)
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Appendix B [14] Hetnarski, R. B., and Ignaczak, J., 1993, “Generalized Thermoelasticity:
Closed-Form Solutions,” J. Therm. Stresse6, pp. 473—498.
Considering the rati? of the fluctuation amplitudes of the first [15] Predeleanu, M., 1987, “Analysis of Thermomechanical Coupling by Boundary
and second terms i(‘51), we obtain Element Method,” inThermomechanical Couplings in Soljdsdited by Bui,
H. D. and Nguyen, Q. S., Elsevier, Amsterdam, pp. 305—-318.
[16] Fleurier, J., and Predeleanu, M., 1987, “On the Use of Coupled Fundamental

1/2
R= ﬂ ex| 2 H |l/2 COS{ 0/2) _ |aR7| (Bl) Solutions in B.E.M. for Thermoelastic Problems,” Eng. Anal. Boundary Elem.,
lag_| r R lr 4, pp. 70-74.
. . . ) [17] Sharp, S., and Crouch, S. L., 1987, “Heat Conduction, Thermoelasticity and
We will examine this ratio and conclude thgi takes on very Consolidation,” inBoundary Element Methods in Mechanieslited by Bes-
large values in the entire range of provided that the distance kos, D. E., Elsevier, Amsterdam, pp. 440—498.

from the epicenter is much greater than the thermoelastic char{18] Manalis, G. D., and Beskos, D. E., 1989, “Integral Formulation and Funda-

o . . mental Solutions of Dynamic Poroelasticity and Thermoelasticity,” Acta
acteristic lengtth. The lengthh is very smallfor most materials Mech., 76, pp. 89104,

[h=0(10 *m) as mentioned in the main text of the pajp@nd,  [19] Manolis, G. D., and Beskos, D. E., 1990, “Integral Formulation and Funda-
therefore, the requirement/f)>1 does not pose any serious mental Solutions of Dynamic Poroelasticity and Thermoelasticity,” Acta
limitation. Similarly to the case of E¢21b), any choice with, say, Mech., 83, pp. 223-226.

. . 0] Hetnarski, R. B., 1961, “Coupled One-Dimensional Thermal Shock Problem
(r/h)=100 leads to a reasonable approximation. To cover thé for Small Times,” Arch. Mech. Stosow13, pp. 295—306.

entire range ofw-values, we discern the following possibilities:  [21] sterberg, E., and Chakravorty, J. G., 1959, “On Inertia Effects in a Transient

(1) Considering @/r)—0, Egs. (4%) and (4%) provide Thermoelastic Problem,” ASME J. Appl. Mect26, pp. 503—509.
: 0 ; 1/2_ [22] Sternberg, E., and Chakravorty, J. G., 1959, “Thermal Shock in an Elastic
=00 =00
t.he results "%’Qﬂg tano=e, Mg -olr . and Body With a Spherical Cavity,” Q. Appl. Math17, pp. 205-218.
lim (,/ry—o COS@2)=2""~. Then, we find that (23] Francis, P. H., 1972, “Thermo-Mechanical Effects in Elastic Wave Propaga-
lim () o((@/r)H[ 1 §? cos@l2) — (|ar-|/{r)1) =0 and tion: A Survey,” J. Sound Vib.21, pp. 181-192.
im , o R=00 [24] Atkinson, C., and Craster, R. V., 1992, “Fracture in Fully Coupled Dynamic
wll)— .

. . . Thermoelasticity,” J. Mech. Phys. Solid40, pp. 1415-1432.
(2) Considering {/r)—«, Egs. (49) and (4%) provide [25] Brock, L. M., 1995, “Slip/Diffusion Zone Formation at Rapidly-Loaded

the results  ling,) .tang=0, limy .. €x°=1 and Cracks in Thermoelastic Solids,” J. Elast0, pp. 183-206. _
”m(m/r)ﬂx cos@l2)=1. Also, from (36) and (49a) we may infer [26] Brock, L. M., Rodgers, M., and Georgiadis, H. G., 1996, “Dynamic Ther-

. . ! moelastic Effects for Half-Planes and Half-Spaces With Nearly-Planar Sur-
that (ag_|/Zg)<1. Then, working as in the above case, we find faces,” J. Elast.44, pp. 229-254.

that lirn(w/r)_ﬂw 9_%200- [27] Brock, L. M., Georgiadis, H. G., and Tsamasphyros, G., 1997, “The Coupled

3) Consideringw=0(r), Egs.(49c) and(49b) lead us to con- Thermoelasticity Problem of the Transient Motion of a Line Heat/Mechanical

g q
1/2 Source Over a Half-Space,” J. Therm. Stres&&s,pp. 773-795.

.Cll.'lde that taio a,nlc/jzeR takes on ygry Iarge values. Consequently’[ZSJ Georgiadis, H. G., Brock, L. M., and Rigatos, A. P., 1998, “Transient Concen-
it is 005(9/2)=_2 i and by(B1) it is seen thair takes on very trated Thermal/Mechanical Loading of the Faces of a Crack in a Coupled-
Iarge values in this case too. Thermoelastic Solid,” Int. J. Solids StrucB85, pp. 1075-1097.

Finally, we note that a numerical evaluation of the two terms il29 Georgiadis, H. G., Rigatos, A. P., and Brock, L. M., 1999, “Thermoelastody-

: : ; . namic Disturbances in a Half-Space Under the Action of a Buried Thermal/
(51) showed that the amp.“tUde of the first term IS, at.mmlmum’ Mechanical Line Source,” Int. J. Solids StrucB6, pp. 3639—-3660.
about 20 orders of magthde greater than the amp“tUde of ”[@0] Barber, J. R., 1972, “Distortion of the Semi-Infinite Solid Due to Transient
second term. Surface Heating,” Int. J. Mech. Scil4, pp. 377-393.
[31] Barber, J. R., and Martin-Moran, C. J., 1982, “Green’s Functions for Transient
Thermoelastic Contact Problems for the Half-Plane,” W&&,pp. 11-19.
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