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Abstract

The present work deals with torsional wave propagation in a linear gradient-elastic half-space. More specifically, we prove
that torsional surface waves (i.e. waves with amplitudes exponentially decaying with distance from the free surface) do
exist in a homogeneous gradient-elastic half-space. This finding is in contrast with the well-known result of the classical
theory of linear elasticity that torsional surface waves do not exist in a homogeneous half-space. The weakness of the
classical theory, at this point, is only circumvented by modeling the half-space as having material properties variable with
depth (E. Meissner, Elastische Oberflachenwellen mit Dispersion in einem inhomogenen Medium, Vierteljahrsschrift der
Naturforschenden Gesellschaft in Zurich 66 (1921) 181–195; I. Vardoulakis, Torsional surface waves in inhomogeneous
elastic media, Internat. J. Numer. Anal. Methods Geomech. 8 (1984) 287–296; G.A. Maugin, Shear horizontal surface acoustic
waves on solids, in: D.F. Parker, G.A. Maugin (Eds.), Recent Developments in Surface Acoustic Waves, Springer Series on
Wave Phenomena, vol. 7, Springer, Berlin, 1988, pp. 158–172), as a layered structure (Maugin, 1988; E. Reissner, Freie
und erzwungene Torsionsschwingungen des elastischen Halbraumes, Ingenieur-Archiv 8 (1937) 229–245) or by considering
couplings with electric and magnetic fields for different types of materials (Maugin, 1988). The theory employed here is the
simplest possible version of Mindlin’s (R.D. Mindlin, Micro-structure in linear elasticity, Arch. Rat. Mech. Anal. 16 (1964)
51–78) generalized linear elasticity. A simple wave-propagation analysis based on Hankel transforms and complex-variable
theory was done in order to determine the conditions for the existence of the torsional surface motions and to derive dispersion
curves and cut-off frequencies. Also, we notice that, up to date, no other generalized linear continuum theory (including the
integral-type non-local theory) has successfully been proposed to predict torsional surface waves in a homogeneous half-space.
© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The classical theory of linear elasticity fails to predict the propagation of freetorsional surface waves in a
homogeneoushalf-space [1–3,4,6]. The criterion for freesurfacewaves is that the displacement decays expo-
nentially with distance from the traction-free surface of the body. An analogous situation is also encountered
in the case of SH waves (i.e. anti-plane shear wave motions). On the contrary, both plane stress/strain and ax-
isymmetric surface waves of theRayleightype are predicted by the classical theory of linear elasticity (see e.g.
[6–8]). However, surface waves of theshear type (i.e. torsional and SH) are known to exist in the nature (see
e.g. [3,9,10]). As Maugin [3] points out this paradox within classical linear elasticity is only resolved by properly
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perturbingthe boundary conditions in the problem. In addition, Maugin [3] discerns between ‘mechanical’ pertur-
bations (Love waves, inhomogeneous substrate, zero-thickness interface, and surface curvature and roughness) and
‘non-mechanical’ perturbations (couplings of the acoustic problem with non-mechanical fields such as electric and
magnetic fields).

In view of the works of Agmon et al. [11,12], Vekua [13] and Thompson [14], the situation concerning non-existence
of torsional and SH surface waves in a homogeneous (isotropic or anisotropic) half-space, within the context of
classical linear elasticity, is translated mathematically to the violation of the pertinentcomplementing(or consis-
tency) condition in a semi-infinite domain for the system consisting of a Helmholtz partial differential equation
(governing time-harmonic torsional motions in cylindrical-polar coordinates and SH motions in Cartesian coor-
dinates), a zero Neumann boundary condition at the traction-free surface and a finiteness condition at infinity. In
general, the complementing or consistency condition on boundary data in a boundary-value problem is a suitability
condition of them to the governing differential equation (or to the system of governing differential equations) (see
e.g. [11,12,15,16]). This condition may have a rather simple form when bounded domains are considered [16,17]
but has not an explicit form for a semi-infinite domain [11,12].

In particular, within the classical linear elasticity theory, Thompson [14] showed that the complementing condition
implies that all surface waves propagate with non-zero velocity. Therefore, this condition is obviously satisfied when
both dilatational and shear deformations are allowed to take place in the half-space, and thus, Rayleigh surface waves
are predicted by the classical theory in the cases of plane stress/strain and general axisymmetric motions. However,
the complementing condition is not satisfied in the cases oftorsionandanti-plane shear.In conclusion, the classical
linear elasticity theory exhibits a mathematical defect (i.e. ill-posedness) in some cases where a simple zero Neumann
condition does not conform to the governing Helmholtz equation in a half-space domain (see [13] for a proof of
the latter statement). Here, in the spirit of the analysis by Maugin [3] (i.e. by perturbing thestrong boundary
condition of the classical theory), we consider a generalized linear continuum theory to provide aregularization
of the aforementioned ill-posed torsional problem of classical elasticity. The corresponding case of SH waves was
also recently treated by the present authors [18].

The continuum theory employed in the present study was introduced by Vardoulakis and Sulem [19] as an
effective and simple version of Mindlin’s [5] general linear elasticity theory with micro-structure. Mindlin begins
with the very general concept of an elastic continuum each point (or element) of which is in itself adeformable
medium (i.e. a micro-medium embedded in the macro-medium). He introduced therefore a continuum withunit
cells (micro-media) in order to model periodic structures like those of crystal lattices, molecules of a polymer,
crystallites of a polycrystal or grains of a granular material. Then, appropriate kinematical quantities are defined to
describe geometrical changes in both the macro- and micro-medium. As Toupin [20] notes if each micro-medium
is constrained to deform homogeneously, Mindlin’s continuum reverts to Ericksen and Truesdell’s [21] oriented
continuum with deformable directors. Also, Mindlin [5] demonstrated that his theory contains the linear equations
of the Cosserat theory [22] and couple stress theory [23,24] as a special case.

Interesting reviews and applications of the above generalized continuum theories and some simplified versions
of them are contained, for instance, in the works of Green [25], Muki and Sternberg [26,27], Weitsman [28,29],
Jaunzemis [30], Mindlin and Eshel [31], Herrmann and Achenbach [32], Eringen [33,34], Germain [35], Maugin
[36], Anderson and Lakes [37,38], and Aifantis [39]. It is evident from these works that Mindlin’s [5] theory is one
of the most completelineargeneralized continuum theories. However, in its general form, it involves an enormously
large number of material constants (903 constants!). A considerable simplification is gained by taking the so-called
relative deformation equal to zero [5]. Further, the work of Vardoulakis and co-workers [19,40,41,42] introduces a
simple expression for the strain-energy density (which involves the standard Lame constants and only two additional
constants) and provides a physical meaning to the extra terms. The additional constants are ‘internal’ characteristic
lengths and their appearance follows the fact that the theory introduces dependence onhigher-orderdeformation
gradients. It is noticed that the presence of these characteristic lengths accentuates the importance of size effects,
and contrary to the classical theory, affords their incorporation into stress analysis. Finally, by utilizing this theory,
Georgiadis and Vardoulakis [43] attacked the anti-plane analogue of Lamb’s [6,8] problem (i.e. a half-space under
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a dynamic concentrated load at the surface) and found that, as opposed to the corresponding result of the classical
elasticity theory, the displacement was bounded even at the point of application of the load.

Therefore, in the present study free time-harmonic torsional motions are considered for a homogeneous gradient-
elastic half-space. The Hankel transform, elements of complex-variable theory and a parametric analysis of the
pertinent dispersion equation are utilized in order to determine the conditions for the existence of torsional surface
waves. Our analysis can be useful in wave-propagation studies (e.g. in relation with Non-Destructive Testing and
Evaluation) for materials exhibitingsurface effects. Such effects were discussed by Weitsman [29], Maugin [3,36],
Anderson and Lakes [37,38], Vardoulakis and Sulem [19], and Exadaktylos and Vardoulakis [42], among others,
and may occur because of damage of surface layers or because of an incomplete structure of edge cells near the
surface of solids. Finally, as regardsnon-linearaspects of surface waves, we refer to the recent work by Maugin
and co-workers (see e.g. [44,45]).

2. Basic preliminaries

In this section we briefly present the basic ideas and equations which describe the dynamics ofgradient-elastic
(dipolar or grade twoelastic) homogeneous materialswithoutcouple-stress effects according to Mindlin [5], Green
[25], Jaunzemis [30], and Vardoulakis and co-workers [19,40–42]. The point of departure is the following expressions
for the strain-energy densityWand kinetic-energy densityT in a 3D continuum (which is composed wholly of unit
cells), with respect to a Cartesian coordinate systemOx1x2x3

W = 1
2cpqsj εpqεsj + 1

2dpqsj`mκpqsκj`m + fpqsj`κpqsεj`, (1)

T = 1
2ρu̇pu̇p + 1

6ρh2 (
∂pu̇q

) (
∂pu̇q

)
, (2)

where (cpqsj , dpqsj lm, fpqsj l) are tensors of material constants,ρ is the mass density, 2h is the internal characteristic
length of thestructured continuum, up is the displacement vector,εpq = (1/2)(∂puq + ∂qup) is the usual linear
strain tensor with∂p ≡ ∂/∂xp, κpqs = ∂pεqs = ∂pεsq , (·) denotes time differentiation, and the Latin indices span
the range (1,2,3).

Then, appropriate definitions for the stresses follow from the variation ofW

τpq = ∂W

∂εpq

, (3a)

mpqs = ∂W

∂κpqs

≡ ∂W

∂(∂pεqs)
, (3b)

wheretpq is the (symmetric) Cauchy stress tensor andmpqs = mpsq is the double (or dipolar) stress tensor. The
latter tensor follows from the notion ofmultipolar forces, which naturally arise from the following expansion of the
mechanical powerM [30] M = Fpu̇p+Fpq(∂pu̇q)+Fpqs(∂p∂qu̇s)+· · · , whereFp are the usual forces (monopolar
forces) within the classical continuum mechanics (monopolar continuum mechanics), and (Fpq ,Fpqs ,...) are referred
to as multipolar forces (double forces, triple forces and so on). Thus, the resultant force on an ensemble of particles
(material cells) can be viewed as being decomposed intoexternaland internal forces with the latter ones being
self-equilibrating. However, these self-equilibrating forces (which are multipolar forces) producenon-vanishing
stresses (double stresses, triple stresses and so on).

Further, from Hamilton’s principle and variational considerations on (1) and (2), where the only independent
variation isdup [5], one obtains the followingequations of motion(in the absence of body forces) and thetraction
boundary conditions along a smooth boundary

∂p(τpq − ∂smspq) = ρüq − ρh2

3
(∂ppüq), (4)
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nrτrs − nqnrnl∂lmqrs − (
nr

(
δql − nqnl

)
∂l + nq (δrl − nrnl) ∂l

)
mqrs

+ (
nqnr

(
δ j̀ − n`nj

)
∂jnl − (δrl − nrn`) ∂`nq

)
mqrs + ρh2

3
nr (∂r üs) = Ps, (5a)

nqnrmqrs = Rs , (5b)

wherens is the outward unit normal to the smooth boundary,dpl is the Kronecker delta,Ps is the surface force
per unit area, andRs is the surface double force (without moment) per unit area. Force systems likeRs have been
considered by Love ([46], p. 187) and Jaunzemis ([30], p. 230). In addition to (5),displacementboundary conditions
were also derived by Vardoulakis and Sulem [19] but are omitted here since these are not relevant to our specific
problem.

Alternatively, from the analysis of Georgiadis and Vardoulakis [47] based on the momenta balance, the following
equations are obtained:

∂p

(
τpq + αpq

) = ρüq , (6a)

∂pmpqs + αqs = ρh2

3

(
∂qüs

)
, (6b)

nq(τqs + αqs) = Ps, (7a)

npnqmpqs = Rs , (7b)

whereapq = −aqp is the so-called relative stress tensor (which is workless in the present case of double forces
without moment). Obviously, Eqs. (6a) and (6b) can be written as thesingleequation (4). Finally, the total stress
spq (which is asymmetric) is defined through

σpq = τpq + αpq. (8)

Notice that the relative stressapq can explicitly be obtained only by (6b) and (3b). Then, the total stress may result
from (3a) and (8).

Now, the simplest possible form of the strain-energy density function in (1) is considered [19,40–42]

W = 1
2λεppεqq + µεpqεqp + 1

2λc
(
∂sεpp

) (
∂sεqq

) + µc
(
∂sεpq

) (
∂sεpq

) + 1
2λbs∂s

(
εppεqq

)
+µbs∂s

(
εpqεqp

)
, (9)

which, along with the definitions (3), leads to the followingconstitutive relations:

τpq = (
λδpqεss + 2µεpq

) + bs∂s

(
λδpqεss + 2µεpq

)
, (10)

mspq = (bs + c∂s)
(
λδpqεjj + 2µεpq

)
, (11)

whereλ andµ are the standard Lame’s constants,c is the gradient coefficient (positive constant with dimensions of
square length),bs ≡ bνs is a material director, withνsνs = 1 andbbeing another material parameter with dimensions
of length. Vardoulakis and co-workers [19,40–42] explained the meaning of the last two terms in the r.h.s. of (9) as
surface-energy terms by writing them under the form (using the Green–Gauss theorem)∫

(V )

∂s [bs(
1
2λεppεqq + µεpqεqp)]dV = b

∫
(S)

(1
2λεppεqq + µεpqεqp)(νsns) dS, (12)

where
∫
(V )

denotes integration over the volumeV of the body,
∫
(S)

integration over the surfaceSenclosingV, and
ns is the outward unit normal to the smooth boundary. In the present study, we consider the particular casens ≡ −ns

which seems natural for a body in the form of a half-space and which corresponds physically to a weakening
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or strengthening (this depends upon the choice of a positive or a negativeb, respectively) of the body along
the direction normal to the surface. In this way,surface effects(e.g. material decohesion or surface tension) can
directly be taken into account in the material constitutive behavior by introducing someanisotropyin the material
response.

In summary, Eqs. (4), (10) and (11) are the governing equations for the gradient elasticity theory with no couple
stresses in a CartesianOx1x2x3 coordinate system. Combining these equations leads to the field equation of the
problem. Pertinentuniquenesstheorems have been proved for the more general Mindlin’s theory [31,48,49] on
the basis of the constraint of a positive definite strain-energy density. The latter restriction requires, in turn, the
following inequalities for the material constants appearing in the theory employed here [47]

(3λ + 2µ) > 0, (13a)

µ > 0, (13b)

c > 0, (13c)

−1 < (b/c1/2) < 1. (13d)

Below, we also provide aphysicalargument for the necessity of (13c). In addition, stability for the field equation
was proved in [47] and to accomplish this the conditionc > 0 is a necessary one.

Finally, an estimation for the gradient coefficientc was provided by Altan and Aifantis [50] within a simpler
gradient elasticity theory (i.e. omitting the surface-energy term). They givec∼=(0.25h)2, where 2h is the characteristic
length of the material cell.

3. Governing equations for torsional motions in a half-space

Attention now is directed to thetorsionaldynamic motions in a gradient-elastic half-space with surface energy.
With respect to a system of cylindrical coordinates (r,θ ,z) having unit base vectors (er ,eθ ,ez), the half-space occupies
the region (0≤ r < ∞, z≥ 0), see Fig. 1. In this case the material director associated with the surface-energy term
takes the form

br = bθ = 0, bz ≡ b 6= 0. (14)

In order to transform the governing equations (4), (10) and (11) into equations in cylindrical coordinates, we first
write the former ones in atensorial form and then usescale factors, physical componentsand theinvarianceof
the form of certain operators (see e.g. [51]). If we omit the terms accounted for dilatational deformation in Eqs.

Fig. 1. An elastic half-space in a torsional state.
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(4), (10) and (11) (notice that in the torsional case only shear motions exist), these equations have the following
tensorial form:

∇ · τττ − ∇ · (∇ · mmm) = ρü̈üu − I (∇ · (∇ü̈üu), (15)

τττ = 2µεεε + 2µbeeez · (∇εεε) , (16)

mmm = 2µ
[
beeez ⊗ εεε + c (∇εεε)

]
, (17)

whereas Eq. (6b) is written as

ααα = −∇ · mmm + I (∇ü̈üu) , (18)

whereI=ρh2/3 is the micro-inertia coefficient.
Further, from the general exposition of Malvern [51] we take the pertinent scale factors as

hr = 1, hθ = r, hz = 1, (19)

whereas the components of the displacement vector are

ur = uz = 0, (20a)

uθ ≡ u (r, z, t) 6= 0. (20b)

Of notice also are the following results:

(∂eeer/∂r) = (∂eeer/∂z) = 0, (∂eeer/∂θ) = eeeθ , (∂eeeθ /∂r) = (∂eeeθ /∂z) = 0,

(∂eeeθ /∂θ) = −eeer , (∂eeez/∂r) = (∂eeez/∂θ) = (∂eeez/∂z) = 0. Finally, the strain tensor in the torsional case has
the physical components (see e.g. [51])

γrθ ≡ 2εrθ = ∂u

∂r
− u

r
, (21)

γzθ ≡ 2εzθ = ∂u

∂z
. (22)

In view of the aforementioned results, the governing equations (15)–(17) take the following form
(

∂τrθ

∂r
+ 2

r
τrθ + ∂τzθ

∂z

)
−

(
∂2mrrθ

∂r2
+ ∂2mzrθ

∂r∂z
+ ∂2mrzθ

∂z∂r
+ ∂2mzzθ

∂z2
+ 3

r

∂mrrθ

∂r
+ 1

r

∂mrzθ

∂z
+ 2

r

∂mzrθ

∂z

+ 1

r

∂mθrr

∂r
− 1

r

∂mθθθ

∂r
+ 1

r

∂mθzr

∂z
+ 1

r2
mθrr − 1

r2
mθθθ + 1

r2
mrθr

)

= ρü − I

(
∂2ü

∂r2
+ 1

r

∂ü

∂r
− 1

r2
ü + ∂2ü

∂z2

)
, (23)

τrθ ≡ τθr = µγrθ + µb
∂γrθ

∂z
, (24a)

τzθ ≡ τθz = µγzθ + µb
∂γzθ

∂z
, (24b)

mrrθ ≡ mrθr = µc
∂γrθ

∂r
, (25a)

mrzθ ≡ mrθz = µc
∂γzθ

∂r
, (25b)
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mzrθ ≡ mzθr = µbγrθ + µc
∂γrθ

∂z
, (25c)

mzzθ ≡ mzθz = µbγzθ + µc
∂γzθ

∂z
, (25d)

mθθθ = 2µc

r
γrθ , (25e)

mθrr = −2µc

r
γrθ , (25f)

mθzr ≡ mθrz = −µc

r
γzθ . (25g)

Inserting now (24a), (24b) and (25a)–(25g) in (23) and using (21) and (22), we obtain thefield equationfor
torsional wave motions in a gradient-elastic half-space

c∇2
(
∇2u − u

r2

)
−

(
1 + c

r2

) (
∇2u − u

r2

)
= I

µ

(
∇2ü − ü

r2

)
− 1

V 2
ü, (26)

where∇2 ≡ [(
∂2/∂r2

) + (1/r) (∂/∂r) + (
∂2/∂z

)]
is the Laplace operator in cylindrical polar coordinates, and

V≡ (µ/ρ)1/2 is the shear-wave velocity in theabsenceof gradient effects (i.e. in classical elasticity).In the absence
of gradient effects, i.e. whenc= 0, Eq. (26) degenerates into the standard wave equation of the second order
governing torsional motions (see e.g. [6]). Thedispersivecharacter of (26) can immediately be seen by writing
it as a wave equation with a non-constant coefficient (or better, with a coefficient in the form of an operator):(
c∇2 − [

1 + (c/r2)
]) (∇2u − (u/r2)

) = (I/µ)(∇2ü−ü/r2)−(1/V 2)ü. Finally, (26) implies that the propagation
of a wave of the formu(r, z = 0, t) = u0·ξ ·J1(ξr)·exp(−iωt)satisfiesC2

ph = V 2(g+cξ2)andω2 = V 2ξ2(g+cξ2),
whereCph = v/j is the phase velocity,ξ is the propagation wave number (taken to be a real quantity),ω is the
frequency of the cylindrical wave (also taken to be a real quantity), andu0 is a constant amplitude. Then, one may
observe that the conditionc> 0 (i.e. relation (13c))alwayssecures, viz. independently ofξ , a real propagation
velocity, a fact which is most relevant to wave propagation problems.

Writing the governing equations for the present problem is completed by obtaining the total stressesσrθ ≡
τrθ + αrθ andσzθ ≡ τzθ + αzθ (see Eq. (8)). Indeed, the relative stresses result from (18) as

αrθ = I

(
∂ü

∂r

)
− µc

(
∂3u

∂r3
− 3

r2

∂u

∂r
+ 3

r3
u + ∂3u

∂z2∂r
− 1

r

∂2u

∂z2

)
− µb

(
∂2u

∂z∂r
− 1

r

∂u

∂z

)
, (27a)

αzθ = I

(
∂ü

∂z

)
− µc

(
∂3u

∂r2∂z
− 1

r

∂2u

∂r∂z
+ 1

r2

∂u

∂z
− ∂3u

∂z3

)
− µb

∂2u

∂z2
, (27b)

and in view also of (24a) and (24b), we finally obtain

σrθ = I

(
∂ü

∂r

)
+ µ

(
∂u

∂r
− u

r

)
− µc

(
∇2 − 4

r2

) (
∂u

∂r
− u

r

)
, (28a)

σzθ = I

(
∂ü

∂z

)
+ µ

(
∂u

∂z

)
− µc

[(
∇2 − 1

r2

) (
∂u

∂z

)]
. (28b)

Eqs. (25a)-(25g), (28a), and (28b) are the constitutive equations for the gradient-elastic response of a half-space
under torsional loading and Eq. (26) is the corresponding field equation in the generaltransientcase. It is worthwhile
noticing that the surface-energy material constantb does not appear in Eqs. (28a) and (28b) relating total stresses
and displacement gradients and also in Eq. (26); it only enters the problem through boundary conditions involving
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double stresses. In the sequel, asteady stateis considered where, as is well-known (see e.g. [6]), the displacement
varies in the following time-harmonic manner:

u(r, z, t) = u(r, z) · exp(−iωt), (29)

where i≡ (−1)1/2 andω is the frequency. The above ‘decomposition’ reduces (26) to the form

c

(
∇2 − 1

r2

) (
∇2u − u

r2

)
− g

(
∇2u − u

r2

)
− k2u = 0, (30)

and the stress–strain relation (28a) and (28b) to the form

σrθ = µg

(
∂u

∂r

)
− µ

u

r
− µc

(
∂2

∂r2
+ 1

r

∂

∂r
− 4

r2
+ ∂2

∂z2

) (
∂u

∂r
− u

r

)
, (31a)

σzθ = µg

(
∂u

∂z

)
− µc

[(
∇2 − 1

r2

) (
∂u

∂z

)]
, (31b)

wherek= ω/V andg= 1−(ω2I / µ). In what follows, as is standard in this type of problems, it is implied that all
field quantities are to be multiplied by the time-harmonic factor exp(−iωt) and that the real part of the resulting
expression is to be taken. The functionu(r,z) obeying the fourth-order PDE (30) is calledmetaharmonicfunction
and can be written as the sum of two arbitrary solutions of two pertinent Helmholtz equations ([13], p. 206).

4. Integral-transform analysis

In order to suppress ther-dependence in the governing equations and the boundary conditions, theHankel
transformof order one defined as follows is employed (see e.g. [52])

f ∗(ξ, z) =
∫ ∞

0
f (r, z) · J1(ξr) · r dr, (32a)

f (r, z) =
∫ ∞

0
f ∗(ξ, z) · J1(ξr) · ξ dξ, (32b)

whereJ1( ) is the Bessel function of the first kind of order one. Under the operation (32a) and assuming those
conditions foru(r,z) stated, e.g., in Section 154 of [52], Eq. (30) is transformed into theordinary differential
equation

c
d4u∗

dz4
−

(
2cξ2 + g

) d2u∗

dz2
+

(
cξ4 + gξ2 − k2

)
u∗ = 0, (33)

and we may extend, by analytic continuation, the range of the transform variableξ into the whole complex plane
cut with pertinent branch lines.

Now, (33) has the following general solution:

u∗(ξ, z) = C1(ξ) · eX1z + C2(ξ) · eX2z + C3(ξ) · eX3z + C4(ξ) · eX4z, (34a)

whereC1(j), . . . , C4(j) are unknown functions, and (X1,. . . X4) are the roots of the correspondingcharacteristic
quartic algebraic equation. However, in view of the fact that these roots occur in pairs asX1 = −X2 andX3 = −X4,
aboundedsolution asz→ ∞ (i.e. one that satisfies thefinitenesscondition at infinity, see e.g. [13]) has the form

u∗(ξ, z) = B(ξ) · e−βz + C(ξ) · e−γ z for z ≥ 0, (34b)
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Fig. 2. The cut complexξ -plane for the functionsβ(ξ ) andγ (ξ ).

provided that theξ -plane has been cut appropriately. In this case,B(j) and C(j) play the role of the unknown
functions and (β,γ ) are the relevant roots given by

β ≡ β(ξ) = (ξ2 − σ 2)1/2, (35a)

with

σ =
[
(g2 + 4ck2)1/2 − g

]1/2

(2c)1/2
> 0, (35b)

γ ≡ γ (ξ) = (ξ2 + τ2)1/2, (36a)

with

τ =
[
(g2 + 4ck2)1/2 + g

]1/2

(2c)1/2
> 0. (36b)

Compatible with the above analysis is taking thebranch cutsfor (β,γ ) shown in Fig. 2. Therefore, any inversion of
the type (32b) should be performed considering this restriction.

Finally, the transformed components of the total-stress tensor and double-stress tensor entering the boundary
conditions are obtained by operating with (32a) on (31b) and (25d) and by taking into account the general solution
in (34b)

σ ∗
zθ (ξ, z) = −µcτ2βB e−βz + µcσ 2γC e−γ z for z ≥ 0, (37)

m∗
zzθ (ξ, z) = µ

[
(cβ − b)βB e−βz + (cγ − b)γC e−γ z

]
for z ≥ 0. (38)
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5. Free torsional surface waves

The criterion for surface waves in this case is that the displacementu decays exponentially with the distancez
from the free surface. Such a case for ahomogeneoushalf-space is precluded according to the classical elasticity
theory [3] but can arise, as it is shown below, within the present gradient elasticity theory (Eqs. (15)–(17)). Indeed,
in view of the analysis leading to (34b) we now explore the possibility ofprogressive-wavesolutions to (26) having
the following form of a distinct harmonic component

ūs(r, z, t) =
[
B(ξ) · e−|β|·z + C(ξ) · e−|γ |·z

]
· J1(ξr) · ξ · e−iω(ξ)·t ≡ u∗

s (ξ, z) · J1(ξr) · ξ · e−iω(ξ)·t , (39)

where (B,C) represent arbitrary amplitude functions denoting the relative dominance of a particular harmonic
component, the propagation wave numberξ is taken to be a real quantity, and (β,γ ) defined in (35a) and (36a)
are taken to bereal andpositivefunctions. The latter restriction is satisfied if and only ifσ < |ξ |. Taking areal
wave number excludes the possibility of localizedstandingwaves (i.e. leaky or evanescent motions), whereas the
frequency at which the wave number (for a particular mode) changes from real to imaginary (or complex) values
is the cut-off frequency. Below, we will see what are the conditions for the existence of torsional surface waves,
within gradient elasticity, and how cut-off frequencies for these waves can be determined. Finally, we notice that a
general surface-wave solution (synthesis) can be derived by (39) as a Hankel inversion integral

us(r, z, t) =
∫ ∞

0
u∗

s (ξ, z) · J1(ξr) · ξ · e−iω(ξ)·t dξ. (40)

Then, the appropriatedispersionor frequency equationis obtained by enforcing the traction-free boundary
conditions along the half-space surfacez= 0. From Eqs. (5a) and (5b) or Eqs. (7a) and (7b), one has

σzθ (r, z = 0) = 0 for 0 ≤ r < ∞, (41a)

mzzθ (r, z = 0) = 0 for 0 ≤ r < ∞. (41b)

The above conditions are transformed next according to (32a) and the general forms in (37) and (38) are considered
but now with |β|= (j2−σ 2)1/2 and |γ |= (j2+τ2)1/2 (with ξ being real and such thatσ < |ξ |). In this way, the
following linear homogeneous system results for the unknown functionsB andC

−µcτ2 |β| · B + µcσ 2 |γ | · C = 0, (42a)

(c|β| − b)|β| · B + (c|γ | − b)|γ | · C = 0, (42b)

which has a non-trivial solution if and only if

−c
[
σ 2(ξ2 − σ 2)1/2 + τ2(ξ2 + τ2)1/2

]
+ bα2 = 0, (43)

with

α2 ≡ σ 2 + τ2 = (g2 + 4ck2)1/2

c
> 0. (44)

Eq. (43) is the dispersion equation for the motion of progressive torsional surface waves in a gradient-elastic
homogeneous half-space. It is noteworthy that the same equation also prevails in the propagation of SH surface
waves [18]. From this equation, dispersion curves were obtained and these will be presented below. Before this,
however, the following observations on (43) are in order: (i) Torsional surface waves exist if and only ifc 6= 0 and
b> 0; the cases (c= 0) or (c 6= 0 andb= 0) or (c 6= 0 andb< 0) lead to non-existence of such waves. (ii) Eq. (43)
being an irrational algebraic equation is amonomodedispersion equation and this is in some contrast with the infinity
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of modes resulting from transcendental equations, which correspond to non-homogeneous models of a half-space
supporting torsional surface waves [1,2,4].

In order now to present numerical results in an effective way, the following normalizations are intro-
duced:

ξd = c
1/2

ξ, (45a)

ωd = ωh/31/2V, (45b)

and one may find thatg ≡ 1 − ω2
d by virtue of the latter definition. Also, the phase velocityCph and wavelength

λ are introduced through the standard relationsCph = ω/ξ andλ = 2π /ξ , respectively. Three different relations
betweenh andc1/2 are then taken to obtain numerical results, viz.h= 2(3c)1/2, (3c)1/2 and (1/2)(3c)1/2, whereas
two different values ofb′ ≡b/c1/2 , viz. b′ = 0.5 and 0.9, are considered in each of the previous cases. All results
have been obtained with the help of MATHEMATICA.

Whenh= 2(3c)1/2, the solution of (43) reads as

ξd =
[
4ω6

d − 11ω4
d + 11ω2

d − 4 + b′2(4ω4
d − 6ω2

d + 4) − 2b′ω2
d(ω2

d + b′2 − 1)1/2
]1/2

×
(
2

∣∣∣ω2
d − 1

∣∣∣)−1
for ωd 6= 1, (46a)

ξd = (1 + 16b′4)1/2(4b′)−1 for ωd = 1. (46b)

In this case, there is a cut-off frequency atωd = 1.000197 forb′ = 0.5 and atωd = 0.439796 forb′ = 0.9. Figs. 3
and 4 depict the variation of the normalized phase velocityCph/V with the normalized wave numberξh and the
normalized wavelengthλ/h, respectively.

Fig. 3. Dispersion curves for the propagation of torsional surface waves showing the variation of the normalized phase velocity (Cph/V) with
the normalized wave numberξh, whenh= 2(3c)1/2.
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Fig. 4. Dispersion curves for the propagation of torsional surface waves showing the variation of the normalized phase velocity (Cph/V) with
the normalized wavelengthλ/h, whenh= 2(3c)1/2.

Whenh= (3c)1/2, the solution of (43) is given as

ξd =
[
ω6

d − 2ω4
d + 2ω2

d − 1 + b′2(ω4
d + 1) − 2b′ω2

d (ω2
d + b′2 − 1)1/2

]1/2
(|ω4

d − 1|)−1 for ωd 6= 1, (47a)

ξd = (1 + 4b′4)1/2(2b′)−1 for ωd = 1. (47b)

Now, there is a cut-off frequency atωd = 1.732048 forb′ = 0.5 and atωd = 0.484316 forb′ = 0.9. Figs. 5 and 6
depict the variation ofCph/V with ξh andλ/h, respectively.

Finally, whenh= (1/2)(3c)1/2, the solution of (43) reads as

ξd =
[
(ω2

d − 1)(ω2
d + 1)2 + b′2(ω4

d + 6ω2
d + 1) − 8b′ω2

d · (ω2
d + b′2 − 1)1/2

]1/2 (∣∣∣ω2
d − 1

∣∣∣)−1
. (48)

In this case, a cut-off frequency occurs atωd = 7.136990 forb′ = 0.5 and atωd = 2.492990 forb′ = 0.9. Figs. 7 and
8 show the variation ofCph/V with ξh andλ/h, respectively.

In all three cases, in theCph/V vs. ξh graph the cut-off frequencies correspond to the beginning of the graph in
the left-hand side of the figure, whereas in theCph/V vs.λ/h graph the cut-off wave numbers are the ones at which
each graph stops in the right-hand side of the figure. Generally, one may observe from the numerical results that the
values of the internal lengthh and the ratio of lengthsb′ ≡ b/c1/2 play a significant role in the form of the dispersion
curves and in the occurrence of a cut-off frequency. In particular, we may conclude that the greater the internal
length is, the cut-off frequency occurs at a lower value.

Finally, another issue which merits discussion pertains to the form of the dispersion curves. In the caseh= 2(3c)1/2,
both curves in Fig. 3 exhibit normal dispersion (i.e. dCph/dξ < 0), but in the caseh= (3c)1/2 andb′ = 0.9 (Fig.
5) as the frequency increases anomalous dispersion (i.e. dCph/dξ > 0) is observed. Also, for even smaller internal
lengthsh, i.e. in the caseh= (1/2)(3c)1/2, both curves in Fig. 7 exhibit anomalous dispersion. This finding reminds
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Fig. 5. Dispersion curves for the propagation of torsional surface waves showing the variation of the normalized phase velocity (Cph/V) with
the normalized wave numberξh, whenh= (3c)1/2.

Fig. 6. Dispersion curves for the propagation of torsional surface waves showing the variation of the normalized phase velocity (Cph/V) with
the normalized wavelengthλ/h, whenh= (3c)1/2.
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Fig. 7. Dispersion curves for the propagation of torsional surface waves showing the variation of the normalized phase velocity (Cph/V) with
the normalized wave numberξh, whenh= (1/2)(3c)1/2.

Fig. 8. Dispersion curves for the propagation of torsional surface waves showing the variation of the normalized phase velocity (Cph/V) with
the normalized wavelengthλ/h, whenh= (1/2)(3c)1/2.



H.G. Georgiadis et al. / Wave Motion 31 (2000) 333–348 347

analogous results for: (i) generalized Rayleigh surface waves in Cu cubic crystals [53], (ii) Stoneley interface waves
in a half-space with a superficial layer [54], and (iii) surface waves in liquids that posses surface tension [55].

6. Concluding remarks

The present analysis shows that the mere existence of torsional surface waves gives rise to justifying an extension
of classical linear elasticity so as to incorporate: (i) surface-energy terms, which are governed by the material
parameterb, (ii) volume strain-gradient terms, which are governed by the material parameterc, and (iii) micro-inertia
terms governed by the material parameterh. Furthermore, appropriate measurements revealing the true dispersion
relationship could be conducted on the basis of the present model. Our numerical results generally show the
dependence of cut-off frequencies and of the character of dispersion (normal–anomalous) upon the size of the
material unit cell.
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