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Abstract

Frictional sliding along an interface between two identical isotropic elastic plates under

impact shear loading is investigated experimentally and numerically. The plates are held

together by a compressive stress and one plate is subject to edge impact near the interface. The

experiments exhibit both a crack-like and a pulse-like mode of sliding. Plane stress finite

element calculations modeling the experimental configuration are carried out, with the

interface characterized by a rate and state dependent frictional law. A variety of sliding modes

are obtained in the calculations depending on the impact velocity, the initial compressive stress

and the values of interface variables. For low values of the initial compressive stress and

impact velocity, sliding occurs in a crack-like mode. For higher values of the initial

compressive stress and/or impact velocity, sliding takes place in a pulse-like mode. One pulse-

like mode involves well-separated pulses with the pulse amplitude increasing with propagation

distance. Another pulse-like mode involves a pulse train of essentially constant amplitude. The

propagation speed of the leading pulse (or of the tip of the crack-like sliding region) is near the

longitudinal wave speed and never less than
ffiffiffi
2

p
times the shear wave speed. Supersonic
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trailing pulses are seen both experimentally and computationally. The trends in the

calculations are compared with those seen in the experiments.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Frictional sliding along an interface between two rapidly deforming solids is a
basic problem of mechanics that arises in a variety of contexts including moving
machinery surface interaction (both macro and micro machines), material processing
(e.g. cutting), the failure of fiber reinforced composites (e.g. fiber pullout) and
earthquake dynamics (fault rupture). However, a framework for quantifying the
wide range of observed dynamic frictional phenomena is only beginning to emerge.
The classical Amontons–Coulomb description of friction states that the shear stress
at an interface is proportional to the normal stress, with the coefficient of
proportionality being the coefficient of friction. Two coefficients of friction are
identified; a static coefficient of friction that governs the onset of sliding and a
dynamic coefficient of friction that characterizes the behavior during sliding.
At the microscale, an evolving population of deforming and fracturing contacts,

possible phase transitions and the presence of various lubricants play an important
role in setting the static and dynamic coefficients of friction as well as in governing
the transition between them. Rate and state models of friction aim at incorporating
the effects of these microscale processes through appropriately chosen state
variables, e.g. Dieterich (1979), Ruina (1983), Rice and Ruina (1983), Linker and
Dieterich (1992), Prakash and Clifton (1993), and Prakash (1998).
Rate and state models of friction have come to the fore because they substantially

influence the predicted mode and stability of sliding. Of particular interest is whether
sliding occurs in a crack-like mode in which the surfaces behind the leading edge of
sliding continuously slide or in a pulse-like mode, first proposed by Heaton (1990), in
which sliding occurs over a relatively small propagating region. One significance of
the sliding mode is that the calculated frictional dissipation in the pulse-like mode is
significantly less than in the crack-like mode and is consistent with some values of
heat generation inferred from geophysical field measurements (Heaton, 1990).
The classical Amontons–Coulomb description of friction is inadequate for

addressing fundamental issues of sliding along interfaces between elastic solids
because with Amontons–Coulomb friction sliding along such an interface is unstable
to periodic perturbations for a wide range of friction coefficients and material
properties, with a growth rate proportional to the wave number (Renardy, 1992;
Adams, 1995). When generalized Rayleigh waves exist, Ranjith and Rice (2001)
found that there are unstable modes for all values of the friction coefficient.
Mathematically, instability of periodic perturbations renders the response of a
material interface with Amontons–Coulomb friction ill-posed. Physically, it implies
that during sliding energy is transferred to shorter wave lengths, leading to pulse
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sharpening and splitting. Numerically, the splitting of individual pulses creates an
inherent grid-size dependence (Andrews and Ben-Zion, 1997; Ben-Zion and
Andrews, 1998). Ranjith and Rice (2001) showed that an experimentally based rate
and state dependent friction law (Prakash and Clifton, 1993; Prakash, 1998), in
which the shear strength in response to an abrupt change in normal stress evolves
continuously with time, regularizes the problem. Convergence through grid size
reduction is then achieved (Cochard and Rice, 2000).
Although rate- and state-dependent frictional laws provide regularization, slip

pulses may still grow with time. Perrin et al. (1995) and Zheng and Rice (1998) found
from anti-plane strain (mode-III) calculations conditions on the frictional law and
the loading conditions needed for well-posedness. They also found that under certain
conditions, which include the rate of steady state velocity weakening, sliding can be
partially crack-like and partially pulse-like. Ben-Zion and Huang (2002) numerically
analyzed a configuration of two identical solids separated by a variable-width fault
zone layer and assumed constant external compressive and shear fields. They showed
that the friction law used by Ranjith and Rice (2001) and Cochard and Rice (2000)
regularizes the Adams instability for identical as well as for dissimilar materials. The
same conclusion was reached analytically by Rice et al. (2001). The use of rate and
state dependent friction not only regularizes the ill-posedness of the sliding problem
but can also eliminate supersonic propagation (Rice et al., 2001). However, the
physical reason for excluding supersonic propagation is not clear.
The issue of limiting propagation speeds arises in the dynamic fracture mechanics

of growing shear cracks (Freund, 1998; Broberg, 1999; Rosakis, 2002) which has
many similarities with the frictional sliding process. Early analytical and numerical
studies of intersonic shear crack growth using continuum slip weakening (Burridge,
1973), 1973; Andrews, 1976; Broberg, 1995, 1996) and velocity weakening cohesive
zone models (Samudrala et al., 2002) concentrated on elucidating the mechanism of
transition from sub-Rayleigh to super-shear wave propagation speeds, see also
Madariaga and Olsen (2000) and Dunham et al. (2003), and on the identification of
stable intersonic propagation speed regimes. Of particular relevance to the present
study is the persistent occurrence of intersonic shear rupture along interfaces
between identical solids which was first observed experimentally by Rosakis et al.
(1999) and by Coker and Rosakis (2001). This phenomenon was subsequently
modeled numerically by Needleman (1999) and by Hao et al. (2004). Atomistic
models of intersonic shear rupture (Abraham and Gao, 2000; Abraham, 2001; Gao
et al., 2001), field observations of intersonic rupture events during recent large
crustal earthquakes (Archuleta, 1984; Olsen et al., 1997; Hernandez et al., 1999;
Bouchon et al., 2001; Lin et al., 2002; Bouchon and Vallee, 2003), as well as recent
laboratory models of earthquake rupture (Xia et al., 2004) have demonstrated the
remarkable length scale persistence (over eleven orders of magnitude) of intersonic
rupture phenomena and of the main features observed in laboratory experiments and
in continuum theories.
Here, frictional sliding between identical rectangular plates subject to an initial

compressive stress and impact shear loading is studied both experimentally and
numerically. In the experiments, a uniform compressive stress is applied to two
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Homalite plates and the impact loading is imposed using a gas gun and a steel
projectile. Dynamic photoelasticity is used to record fringe patterns on a micro-
second time-scale. The fringe patterns give indirect evidence of the sliding mode and
the propagation speed of the sliding tip is measured. Plane stress calculations
modeling the experimental configuration are carried out with friction characterized
by a rate- and state-dependent relation, including the Prakash–Clifton (Prakash and
Clifton, 1993; Prakash, 1998) normal stress dependence. A parameter study is
undertaken to predict possible modes of sliding in this configuration together with
the associated propagation speeds. The dependence on loading conditions is
explored and the computational results are compared with the experimental
observations.
2. Formulation

2.1. Boundary value problem

We consider two solids undergoing relative motion across an interface Sint: A
framework is used where two constitutive relations are specified; one for the plate
material and one to characterize frictional sliding in terms of the traction and
velocity jump across the interface. Plane stress conditions are assumed, geometry
changes are neglected1 and the principle of virtual work is written asZ

A

r : dedA �

Z
Sint

T � dDudS ¼

Z
Sext

T � dudS �

Z
A

r
q2u
qt2

� dudA; (1)

where t is time, r is the stress tensor, e is the strain tensor, u is the displacement
vector, T is the traction vector, Du is the displacement jump across the interface, r : e
denotes sij�ji; and A, Sext and Sint are the area, external boundary, and interface line,
respectively, in the reference configuration.
Computations are carried out for the specimen geometry shown in Fig. 1 with

‘ ¼ 75mm and w ¼ 132mm: A Cartesian coordinate system with the x1 � x2� plane
being the plane of deformation is used and the origin is taken as shown in Fig. 1. The
plates are subject to a uniform compressive stress of magnitude S0: For tp0; S22 ¼

�S0 and Tn ¼ S0 along the interface. Displacements are measured from the
uniformly compressed state at t ¼ 0�:
At t ¼ 0þ; a normal velocity is prescribed along the portion of the edge x1 ¼ 0 for

which �bpx2p0; with b ¼ 25mm; and the shear traction is taken to vanish there.
Hence,

u1 ¼ �

Z t

0

V ðxÞdx; T2 ¼ 0; on x1 ¼ 0 and � bpx2p0; (2)
1The calculations are carried out using a finite element code developed for finite deformations in which

the constitutive relation is expressed in terms of second Piola–Kirchhoff stress and Lagrangian strain

components; otherwise finite deformation effects are neglected in the calculations here.
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Fig. 1. (a) Geometry and loading configuration used in the plane stress finite element calculations. (b) The

finite element mesh used in the calculations (56,580 degrees of freedom). (c) Close up of the mesh near the

transition along the x1 axis between the uniform and graduated mesh regions; distances are in m.

D. Coker et al. / J. Mech. Phys. Solids 53 (2005) 884–922888
where in Eq. (2)

V ðtÞ ¼

V imp t=tr; for 0ptotr;

V imp; for trptptp;

V imp ½1� ðt � tpÞ=ts	; for tpotoðtp þ tsÞ;

0; for tXðtp þ tsÞ:

8>>>><
>>>>:

(3)

Here, tr is the rise time, tp is the pulse time and ts is the step down time. In the
calculations tr and ts are fixed at 10ms and ðtp � trÞ is 50ms: On the remaining
external surfaces of the specimen T ¼ 0:
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The plate material is characterized as an isotropic elastic solid with Young’s
modulus E and Poisson’s ratio n: In plane stress, the longitudinal, cl; shear, cs; and
Rayleigh, cR; wave speeds are given by

cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rð1� n2Þ

s
; cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2rð1þ nÞ

s
; cR ¼ cs

0:86þ 1:14n
1þ n

: (4)

Using elastic properties representative of Homalite-100: E ¼ 5:3GPa; n ¼ 0:35 and
density r ¼ 1246 kg=m3; the elastic wave speeds in Eq. (4) are given by

cl ¼ 2201m=s; cs ¼ 1255m=s; cR ¼ 1170m=s: (5)

A rate- and state-dependent friction law is taken to characterize the response along
the interface x2 ¼ 0: With n and s, respectively, denoting in-plane directions normal
and tangential to the interface, D _un and D _us are the difference in velocity between
material points that are on opposite sides of the interface in the initial configuration.
Since the change in the positions of material points along the interface is not
accounted for, the formulation is restricted to small amounts of sliding. When
Dun4� S0=Cn; the interface is in tension and

Tn ¼ 0; T s ¼ 0; (6)

along Sint: Otherwise,

_Tn ¼ �CnD _un; (7)

_T s ¼ Cs½D _us � sgnðT sÞD _uslip	: (8)

Here, as in Povirk and Needleman (1993), the interface is presumed to have an elastic
stiffness and D _uslip is the magnitude of the sliding velocity specified by the rate- and
state-dependent friction law (D _uslipX0). In the elastic-friction relation Eq. (8) D _uslip is
an internal variable determined from the frictional constitutive description, while D _us
is the jump in particle velocity across the interface. Unless otherwise specified, the
values Cn ¼ 300GPa=m and Cs ¼ 100GPa=m are used in the calculations here.
These values give good agreement with the observed behavior of the head wave
under symmetric loading conditions as noted in Section 4.1.
The finite element discretization is based on linear displacement triangular

elements that are arranged in a ‘crossed-triangle’ quadrilateral pattern. When the
finite element discretization of the displacement field is substituted into Eq. (1) and
the integrations are carried out, equations of the form

M
q2U
qt2

¼ R; (9)

are obtained where U is the vector of nodal displacements,M is the mass matrix and
R is the nodal force vector consisting of contributions from the area elements and the
interface. Four point Gaussian integration is used along the interface. The governing
equations are integrated using a central difference scheme that can be regarded as a
member of the Newmark b family of time integration algorithms, Belytschko et al.
(1976). A lumped mass matrix is used instead of the consistent mass matrix, since this
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has been found preferable for explicit time integration procedures, from the point of
view of accuracy as well as computational efficiency (Krieg and Key, 1973).
The mesh used in the calculations consists of a fine region with uniform

rectangular elements near the interface at impact edge, with the mesh spacing then
gradually increasing in size. The mesh has 18,320 quadrilateral elements and
56,580 degrees of freedom, with the uniform mesh region consisting of 200
 20
rectangles, each of which is 0:30mm
 0:20mm; so that the uniform mesh extends
60mm from the impact edge. The configuration analyzed and the finite element mesh
used are shown in Fig. 1.

2.2. Rate- and state-dependent friction law

The classical Amontons–Coulomb frictional relation has the form

jT sj ¼ mTn; (10)

where Tn is the component of T in the direction of the normal to the interface, T s is
the component of T tangent to the sliding direction and m is the (constant) coefficient
of friction. The relation (10) holds when the normal traction is compressive, i.e. with
the sign convention here when Tn40:
The problem of two elastic half-spaces sliding with a constant coefficient of

friction, m; is ill-posed for a significant range of values of m; Adams (1995). This
manifests itself in numerical solutions through a lack of convergence with increasing
mesh refinement. Rate and state dependent friction laws were introduced, mainly in
the geophysics literature, to account for experimental observations that could not be
rationalized in the context of a Coulomb friction description. At each point on the
interface, the coefficient of friction m in Eq. (10) is taken to depend on the frictional
sliding velocity at that point, D _uslip; and a set of state variables, yi so that

jT sj ¼ mðyi;D _uslipÞTn:

The state variables are regarded as phenomenological parameters that account for
the change of contact quality between the surfaces over time. Rate and state
dependent friction models can account for the following fundamental observations
on friction (Dieterich, 1979, Rice and Ruina, 1983; Ruina, 1983):
(i)
 There is an instantaneous increase in the coefficient of friction in response to a
step increase D _uslip (the direct effect),
(ii)
 there is a subsequent change to a steady-state value of the coefficient of friction
with this steady-state value being a decreasing function of D _uslip; and
(iii)
 the approach to this steady-state value occurs over a characteristic distance that
is independent of D _uslip:
Another key observation is that transmitted shear stresses do not instantaneously
follow a step drop in the normal stresses, Prakash and Clifton (1993), Prakash
(1998). Instead, immediately following a step drop in jTnj; as the slip accumulates
the shear stress gradually approaches a new steady-state level characteristic of the
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new normal pressure and the current sliding velocity, Prakash and Clifton (1993).
The relation, Eq. (10), is replaced by, Prakash and Clifton (1993), Prakash
(1998),

jT sj ¼ mðy0;D _uslipÞðy1 þ y2Þ; (11)

with the evolution of the state variables y1 and y2 given by

_y1 ¼ �
1

L1
½y1 � CTn	D _uslip; (12)

_y2 ¼ �
1

L2
½y2 � DTn	D _uslip; (13)

where L1 and L2 are characteristic lengths. In the steady state, when _y1 ¼ 0 and
_y2 ¼ 0; Eqs. (11)–(13) imply T s / Tn:
In Dieterich (1979); Rice and Ruina (1983) and Ruina (1983) m was taken to have

a logarithmic dependence on the sliding velocity. In such a relation, m is not bounded
at D _uslip ¼ 0 which leads to difficulties in numerical computations. Rice and Ben-
Zion (1996) and Ben-Zion and Rice (1997) appealed to an activated rate process
interpretation which resulted in a relation bounded at D _uslip ¼ 0: Here, we adopt a
purely phenomenological expression for m proposed by Povirk and Needleman
(1993) that has the form

mðy0;D _uslipÞ ¼ gðy0Þ
D _uslip

V0
þ 1

� 	1=m

; (14)

with

gðy0Þ ¼
md þ ðms � mdÞ exp �

L0=y0
V1

� 	p
 �
L0=y0

V 0
þ 1


 �1=m
; (15)

where the evolution of y0 is given by,

_y0 ¼ B 1�
y0D _uslip

L0

� 	
(16)

and ms; md ; L0; V 0; V1 and B are prescribed constants. We note that the internal
variable y0 has the dimension of time, while the internal variables y1 and y2 have the
dimension of stress.
The steady-state value of y0; i.e. the value at which _y0 ¼ 0 is L0=D _uslip: Substituting

this value into Eqs. (14) and (15) gives the steady-state value for the friction
coefficient, mss; at sliding velocity D _uslip as

mss ¼ md þ ðms � mdÞ exp �
D _uslip

V 1

� 	p
 �
: (17)
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The frictional relation Eq. (8) is only invoked if there is contact (TnX0). Even
when there is contact, D _uslip may still vanish. Define

b ¼
jT sj

gðy0Þðy1 þ y2Þ
; (18)

then from Eqs. (11) and (14), and requiring D _uslip to be non-negative, D _uslip is given
by

D _uslip ¼
V0ðb

m
� 1Þ; for b41;

0; for bp1:

(
(19)

Note that b41 implies jT sj � gðy0Þðy1 þ y2Þ40: When the normal traction is
constant y1 þ y2 ¼ Tn and b simplifies to jT sj=Tngðy0Þ as in Povirk and Needleman
(1993).
We refer to circumstances where D _uslip ¼ 0 as sticking and circumstances where

D _uslip40 as frictional sliding.
The procedure used to carry out time integration of this frictional constitutive

relation is described in the appendix.

2.3. Friction law parameters

Samudrala et al. (2002) and Rosakis (2002) fit sliding experiments of Homalite on
Homalite (Rosakis et al., 1999, 2000) with an expression of the form

mss ¼ m0 1þ a
D _uslip

cs

G

2t0


 �
; (20)

where 2G ¼ E=ð1þ nÞ and t0 is the shear strength of Homalite. From the observed
inclination of tensile micro-cracks emanating from the interface, the parameter
values a ¼ �0:4; G=t0 ¼ 136; and m0 ¼ 0:6 were obtained.
Parameter values in Eq. (17) were chosen to match the response in Eq. (20) for

D _uslipo40m=s: Fig. 2a shows mss as a function of D _uslip from Eq. (20) and from Eq.
(17) with ms ¼ 0:6; md ¼ 0:5; p ¼ 1:2 and V 1 ¼ 26m=s: The parameters V 0 and m in
Eq. (14) were chosen to be consistent with the observed response for D _uslip ranging
from 10 to 40m/s (Fig. 2a). Fig. 2b shows the friction coefficient, T s=Tn; as a
function of the accumulated frictional sliding Duslip ¼

R
D _uslip dt: There is an

instantaneous increase in T s=Tn in the same direction as the change in D _uslip (the
direct effect) followed by a gradual decrease to a steady-state value. The apparent
coefficient of friction T s=Tn can attain values outside the range defined by the static
and dynamic coefficients of friction due to the direct effect in the rate- and state-
dependent friction law.
The parameter values for the normal stress dependent response, C, D, L1; are

chosen close to values obtained in the experiments of Prakash and Clifton (1993).
The initial values for the internal variables were set to y0ð0Þ ¼ L=10 _V1 and y1ð0Þ ¼
CS0 and y2ð0Þ ¼ DS0: Fig. 3 shows the response using Eqs. (11)–(16) under a step
jump in compressive normal traction at a constant sliding velocity. The plots show
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Fig. 3. Variation of the shear traction, T s; (solid line) as a function of Duslip for a step jump in compressive

normal traction, Tn; (dashed line) at constant frictional sliding rate D _uslip for the rate- and state-dependent
friction relation used in the calculations.
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Fig. 2. (a) The steady-state coefficient of friction, mss; as a function of D _uslip for Eq. (20) (dashed line) and
for Eq. (17) using the properties in Table 1 (solid line). (b) The effect of an abrupt change in D _uslip on the

apparent coefficient of friction T s=Tn for the rate- and state-dependent friction relation used in the

calculations.
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the imposed normal traction (dashed line) and the shear traction (solid line) as
functions of the accumulated frictional sliding Duslip: There is a gradual change of the
state variables and the shear resistance after a step decrease in the normal compressive
stress. The apparent coefficient of friction, T s=Tn; however, has a sudden jump.
The choice of the initial values for the state variables is arbitrary but can be of

significance when comparing to other friction models such as slip-weakening
models (Bizzarri et al., 2001). The parameters characterizing the frictional
constitutive relation used in the calculations are those in Table 1 unless specifically
stated otherwise.
3. Experimental methods and results

The experimental procedures are similar to those used to study shear crack
propagation (Rosakis et al., 1999). Two Homalite plates, each with ‘ ¼ 76:2mm
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Table 1

Friction parameter values used in the finite element calculations

Property Value

ms 0.6

md 0.5

V0 (m/s) 100

V1 (m/s) 26

B 4.60

p 1.2

m 5

L0 (m) 20
 10�6

L1 (m) 20
 10�6

L2 (m) 20
 10�6

C 0.7

D 0.3

D. Coker et al. / J. Mech. Phys. Solids 53 (2005) 884–922894
w ¼ 139:7mm (see Fig. 1a) and 9.525mm thick are held together by a uniform
compressive stress. Homalite is a brittle polyester resin that exhibits stress induced
birefringence and is mildly rate sensitive. At a strain rate of 103 s�1 the elastic wave
speeds are given by Eq. (5). The impact loading is imposed via a cylindrical steel
projectile of diameter 25mm and length 51mm fired using a gas gun with impact
speeds ranging from 10 to 60m/s. A steel buffer plate, 25:4mm
 76:2mm and
9:525mm thick, is bonded to the impacted plate to prevent shattering at the impact
side (x1 ¼ 0 in Fig. 1a) and to induce a more or less planar loading wave. A uniform
compressive stress is applied by a press which was calibrated using a load cell. The
loading wave, as measured from a strain gage glued to the specimen, is of a
trapezoidal form with a rise time of 10–20 ms followed by an essentially steady
velocity for 40ms: Dynamic photoelasticity is used to extract stress field information
around the interface. The photoelastic fringe patterns were recorded in real time
using a high-speed Cordin CCD camera capable of capturing 16 images at a rate of
100 million frames per second. A collimated laser beam with a diameter of 130mm is
used to illuminate the specimen. Two pairs of circular polarizer plates, placed on
either side of the specimen as described by Rosakis et al. (1999), produce
isochromatic fringes. The photoelastic optical setup is arranged for light field.
The isochromatic fringes are related to contours of s1 � s2; with s1 being the

maximum in-plane principal stress and s2 the minimum in-plane principal stress,
through the stress optical relation

s1 � s2 ¼
NFs

h
; (21)

where Fs is the stress optical coefficient of Homalite, h is the specimen thickness, and
N is the isochromatic fringe order.
The experimental results are presented in detail in Lykotrafitis et al. (2005). Here,

a few experimental results that illustrate characteristic features are presented for
comparison with the numerical calculations.
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Fig. 4. Experimental isochromatic fringe patterns from a dynamic friction experiment on homalite subject

to a static compressive stress of 9.4MPa and an impact velocity of 32.7m/s. In the inset lines are drawn to

highlight Mach lines. The field of view is 130mm in diameter.
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Results with a compressive stress of 9.4MPa and impact velocities of 32.7 and
42.2m/s are presented. Fig. 4 shows the isochromatic fringe patterns obtained with
an impact velocity of 32.7m/s. Experiments conducted at lower impact velocities
exhibit similar characteristics. In Fig. 4, the loading wave front, which travels at cl;
arrives from the left. Behind the loading wave front a shear Mach cone, formed by a
sharp change in fringe density is observed. The inset to Fig. 4 focuses on the region
near the propagating tip with a thick line drawn over the Mach line. The sliding tip
follows the loading wave and the tip can be located by tracing the Mach line to the
interface. In this case the sliding tip follows shortly behind the dilational loading
wave. The propagation speed of the sliding tip is  1810m=s as measured by two
methods. One measurement involves following the position of the sliding tip in
various frames and knowing the frame timing, the propagation speed is obtained. In
the second method the Mach angle is used to obtain the tip speed. The two methods
give consistent propagation speeds.
In Fig. 4, there is a concentration of isochromatic fringes some distance behind the

sliding tip that propagates at approximately cR and that is a consequence of waves
emanating from the projectile corners. Other characteristic features in Fig. 4 are: (i)
there is a cusp in the stress contours at the interfaces, indicating that the propagation
speed is slightly faster along the interface than in the bulk; (ii) the fringe density is
higher in the plate where the impact loading is applied, showing that energy is not
transferred easily through the interface; and (iii) the fringe discontinuity at the
interface shows that sliding is occurring in a crack-like mode.
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Fig. 5. Experimental isochromatic fringe patterns from a dynamic friction experiment on homalite subject

to a static compressive stress of 9.4MPa and impact velocity of 42m/s, at (a) t ¼ 40ms; (b) t ¼ 48ms; (c)
t ¼ 60ms: In the inset one or more lines are drawn to highlight Mach lines. The field of view is 130mm in

diameter.
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Isochromatic fringe patterns for an experiment with an impact velocity of 42m/s
are shown in Fig. 5 at 40, 48 and 60ms after impact. The thick lines in the insets are
drawn to show the Mach line locations and orientations. Both methods of
calculating the propagation speed of the sliding tip give a propagation speed of
about 1950m/s. Although the general characteristics seen in Fig. 4 are preserved,
new features enrich the picture. Behind the impact wave a shear Mach line
emanating from the sliding tip is observed. In addition, a second Mach line emanates
behind the sliding tip that is not parallel to the first one (Fig. 5a). This Mach line is at
a shallower slope corresponding to a propagation speed of  2600m=s which is
supersonic with respect to the plane stress longitudinal wave speed. In Fig. 5b the tip
of the second Mach line approaches the tip of the first Mach line at the interface.
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These two points merge as the second point catches up with the first point (Fig. 5c)
and only one Mach line continues to be observed in subsequent frames (not shown).
Behind the second Mach line there is a fringe concentration, associated with the

loading, that travels at the Rayleigh wave speed. Some fringes pass continuously
from the upper plate to the lower plate which is consistent with a contact region
forming. In experiments with the magnitude of the initial compressive stress
increased, there is an increase in the number of discontinuous regions of fringe
concentration that may indicate separate regions of sliding and regions of sticking
(i.e. multiple pulses). In each experiment, the speed of the leading sliding tip is found
to be essentially constant. In addition, the propagation speed of the leading sliding
tip was found to increase with increasing impact speed (or decreasing compressive
stress) and in all cases to be between

ffiffiffi
2

p
cs and cl:
4. Numerical results

The focus here is on illustrating the range of behaviors that are obtained by
varying the magnitude of the initial compressive stress S0 and the impact velocity
V imp: Results are presented for combinations of S0 and V imp that give rise to the
following five sliding modes:

Case I: A crack-like mode—S0 ¼ 6MPa; V imp ¼ 2m=s:
Case II: A pulse-like mode—S0 ¼ 30MPa; V imp ¼ 2m=s:
Case III: A train of pulses—S0 ¼ 10MPa; V imp ¼ 20m=s:
Case IV: Multiple pulses coalescing to form a crack—S0 ¼ 0:9MPa; V imp ¼

10m=s:
Case V: A pulse-like mode followed by a crack-like mode—S0 ¼ 40MPa; V imp ¼

2m=s:
In all cases but Case V, the friction parameters are as specified in Table 1. For

Case V, the exponent p in Eq. (15) is taken to be 0.5 and V 1 ¼ 1m=s: Also, for Case
IV the values of the interface elastic constants are Cn ¼ 30GPa=m and Cs ¼

10GPa=m; one tenth their value in all the other cases. In the results presented here,
the frictional sliding region remains within the fine uniform part of the mesh.
Results are presented for: (i) propagation speeds; (ii) the spatial distribution and

time evolution of various interface quantities; and (iii) isochromatic fringe patterns
(contours of s1 � s2 with s1 being the maximum in-plane principal stress and s2 the
minimum in-plane principal stress).
Curves of propagation speed versus time for all five cases analyzed are shown in

Fig. 6. For reference, the longitudinal, cl; shear, cs; and
ffiffiffi
2

p
cs (¼ 1775m/s) wave

speeds are marked. Also shown in the figure are data points corresponding to
measured propagation speeds for the experiment with S0 ¼ 9:4MPa and an impact
velocity of 42m/s. The first step in computing the propagation speeds is to record the
location of the point furthest from the impact edge where D _uslip40: This gives the
position of the leading sliding tip at various times and the propagation speed, V tip; is
then calculated from this data by a progressive least squares fit using five points. At
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Fig. 6. Propagation speeds, V tip; versus time for the five cases analyzed. The symbols are the

experimentally measured propagation speeds from the Mach cone angle with S0 ¼ 9:4MPa and V imp ¼

42m=s (Fig. 5).
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least some of the oscillations in propagation speed in Fig. 6 may be due to this
numerical differentiation procedure.
Sliding generally initiates somewhat away from the impact edge and then occurs

over several small sliding regions that link up. Thus, the process of sliding initiation
is not one of propagation of a sliding region but involves jumps in the location of the
leading sliding edge. As a consequence, the ‘speeds’ calculated during the early stages
of sliding are unphysically high. Subsequently, the propagation speeds decrease and
for Cases II and V, the mean V tip is about cl whereas for Case IV, after the initial
stages of sliding, V tip reduces to  2000m=s; in good agreement with the
experimental value of 1950m/s. There are multiple pulses in Case IV and the tip
of the second pulse travels at about 2700m/s, as compared with  2600m=s in the
experiments. It is worth emphasizing that both the experiments and the calculations
indicate that the second pulse travels at a supersonic speed (supersonic with respect
to the plane stress longitudinal wave speed). However, for the calculation of Case IV,
S0 ¼ 0:9MPa and V imp ¼ 10m=s as compared with 9.4 MPa and 42 m/s in the
experiments. Hence, there is consistency of propagation speeds for this mode of
interface sliding although the loading conditions to achieve this are quite different in
the calculations and in the experiments. One possibility for this discrepancy is that
the effect of the impedance mismatch between the steel plate bonded to the specimen
and Homalite is not accounted for in the computations.
In the following, distributions are shown both for the evolution of D _us; which is

the particle velocity jump, and for D _uslip; which is the sliding rate obtained from the
frictional constitutive relation. From Eq. (8), the difference between these is the
‘elastic’ sliding rate _T s=Cs: There are cases where D _us  D _uslip with the elastic sliding
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rate being negligible. However, in other cases the difference between D _us and D _uslip is
substantial and the elasticity of the interface then plays a significant role.
The principal stress contours that evolve are a consequence of both the imposed

loading and sliding along the interface. To provide a perspective on the contribution
of interfacial sliding, the contours of s1 � s2 that emerge from impact loading with
no sliding are considered first.

4.1. Symmetric loading with respect to the interface

In order to illustrate the isochromatic fringe patterns that result without sliding,
the symmetric loading configuration shown in the inset of Fig. 7a is analyzed. Fig. 7a
shows the simulated isochromatic fringe pattern at t ¼ 16ms for a calculation carried
out with S0 ¼ 10MPa and V imp ¼ 5m=s: At this time, the loading wave front has
propagated 34mm into the specimen. The isochromatic fringe pattern for a
symmetric loading experiment with S0 ¼ 0MPa and V imp ¼ 58m=s is shown in Fig.
7b. In both the experiments and simulations the continuity of fringes across the
interface behind the loading wave front indicates that no sliding occurs along the
interface under symmetric loading.
In both the simulations and the experiments, at the loading wave front there is a

cusp in the stress contours at the interface (marked by the arrow A), indicating that
the propagation speed is faster along the interface than in the bulk. The cusp in the
fringes at the interface in Fig. 7b is also seen when frictional sliding occurs (Figs. 4
and 5). Another characteristic feature is marked by box B in Fig. 7. The curvature of
the fringe lines associated with this feature is greater in the computations in Fig. 7a,
but this curvature decreases with time. A similar feature, with a curvature closer to
what is seen in the computations, is in Fig. 5b. Our simulations indicate that the cusp
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Fig. 7. Isochromatic fringe patterns due to loading symmetric with respect to the interface. (a) Computed

isochromatic fringe patterns (contours of s1 � s2) at t ¼ 16ms for S0 ¼ 10MPa; V imp ¼ 5m=s; with the

configuration analyzed shown in the inset. (b) Experimental isochromatic fringe patterns for S0 ¼ 0MPa;
V imp ¼ 58m=s: In (b) the field of view is 130mm in diameter.
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in the fringe line and the feature in box B are a consequence of the impact loading
conditions and thus not directly associated with frictional sliding.
A relatively broad head wave that emanates from the interface following the

loading wave front is shown by the arrow C. The width of the head wave in the
simulations was found to depend on Cn and Cs in Eqs. (7) and (8), and to expand
with decreasing applied load. This can be used to set the values of the interface elastic
stiffnesses and the values used in most of the calculations here, Cn ¼ 300GPa=m and
Cs ¼ 100GPa=m; give rather good agreement for symmetrically loaded specimens
with S0 in the range 5–40MPa.

4.2. Case I: crack-like mode

Fig. 8a shows the variation of D _uslip; and the shear traction, T s; along the interface
at t ¼ 22ms (dashed lines) and at t ¼ 32ms (solid lines) for Case I (S0 ¼ 6MPa;
V imp ¼ 2m=s). Frictional sliding initiates at the impact edge ðx1 ¼ 0Þ 16ms after
impact. The distributions of D _uslip and T s along the interface are similar at 22 and
32ms; indicating at least quasi-steady behavior.
Ahead of the frictional sliding tip, D _uslip ¼ 0: At the tip, D _uslip jumps to its peak

value of about 7m/s within two mesh spacings (eight interface integration points)
and then gradually reduces to  5m=s: As seen in Fig. 8a, the peak value of D _uslip
gradually increases with time. This behavior is crack-like in that frictional sliding
persists at a point on the interface after the sliding front has past that point.
The shear traction steadily increases from the loading wave front, which is at

x1 ¼ 71mm at t ¼ 32ms; and reaches a maximum value of about 3.9MPa at the
frictional sliding tip after which it decreases to a steady value of 3.6MPa. The
normal traction along the interface gradually increases from its initial value of
6–6.39MPa at the frictional sliding tip and subsequently decreases to 6.14MPa
along the sliding region. The apparent coefficient of friction, mapp ¼ T s=Tn; is
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Fig. 8. Distributions along a portion of the interface for Case I—S0 ¼ 6MPa; V imp ¼ 2m=s: (a) The
frictional sliding rate, D _uslip; and the shear traction, T s at t ¼ 22ms and at t ¼ 32ms: The symbols mark
values at integration points along the interface to illustrate the resolution of the discretization. (b) The

shear traction increment, dT s ¼ _T s dt; and the velocity jump across the interface, D _us; at t ¼ 32ms:
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 0:609 at the frictional sliding tip and reduces to 0.585 along the sliding region with
small variations. Thus, in this case mapp remains very close to ms: The value of Tn

itself is nearly constant along the interface, differing by less than 0.6 MPa from
S0 ¼ 6MPa; except near the impact edge (0px1p10mm) where the magnitude of
Tn decreases.
The actual velocity jump across the interface is D _us; which consists of an elastic

part in addition to D _uslip: Fig. 8b shows the distribution of D _us as well as the traction
increment dT s ¼ _T s dt distribution. Because of the elasticity in the interface
constitutive relation, Eq. (8), D _us increases gradually to it peak value, rather than
exhibiting a sharp jump. However, behind the frictional sliding tip, D _us and D _uslip are
nearly equal. Consistent with this, since the elastic contribution is _T s=Cs; _T s  0
behind the frictional sliding tip.
Isochromatic fringe patterns (contours of s1 � s2) at t ¼ 32ms are shown in Fig. 9.

Behind the loading wave front (which is at 71mm) a concentration of fringes at 44mm
indicates the location of the frictional sliding tip. A shear Mach cone, formed by a
sharp change in fringe density, emanates from the sliding tip at an angle of 34�: Using
Da=Dt ¼ sin y=cs; where y is the Mach angle, gives a tip speed of 2244m/s which is
close to, but less than, the directly calculated tip speed in Fig. 6. Another Mach cone,
formed by a more gradual change in fringe density at an angle of 67� and, presuming
that cl is the relevant speed of sound for this Mach cone, a propagation speed of
2360m/s is obtained from Da=Dt ¼ sin y=cl: Behind the frictional sliding tip there is
no significant stress concentration, indicative of sliding occurring along the interface.
4.3. Case II: pulse-like mode

In Fig. 10a, the variation of the frictional sliding rate, D _uslip; and the shear
traction, T s; along the interface at t ¼ 32ms (dashed lines) and at t ¼ 34ms (solid
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Fig. 9. Contours of s1 � s2 (isochromatic fringe patterns) at t ¼ 32ms for Case I.
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lines with circles) are shown for Case II (S0 ¼ 30MPa; V imp ¼ 2m=s). Frictional
sliding initiates at t ¼ 28ms; which is later than for Case I because the larger
compressive stress requires a larger shear stress for initiation. In Case II, frictional
sliding occurs in a pulse-like mode which involves a relatively narrow zone (the
pulse) where D _uslip40; with D _uslip ¼ 0 ahead of and behind the pulse. The circles in
Fig. 10a show the integration point locations (since D _uslip is a constitutive quantity it
is stored at interface element integration points) to indicate the extent to which the
pulse is resolved; the sharp pulse consists of 9–10 points.
A pulse initiates at the impact edge and as it travels across the interface the peak

value of D _uslip increases. The pulse profile consists of D _uslip gradually increasing from
zero to 40m/s in 4.5mm after which it sharply rises to 700 m/s over a distance of 0.5
mm and then drops abruptly to zero over a distance of 0.4 mm. Additional pulses
initiate and evolve in a similar manner; there are two pulses at t ¼ 32ms and three at
t ¼ 34ms:
The shear traction distribution along the interface is also shown in Fig. 10a (note

that the range for T s is larger than in Fig. 8a). At t ¼ 32ms; the shear traction along
the interface gradually increases from zero at the loading wave front (which is at
71mm) to 18MPa at the tip of the leading pulse. The value of T s remains
approximately constant over the pulse, abruptly decreases to 14 MPa at the trailing
edge of the pulse and then very gradually increases until the second slip-pulse is
reached. The variation of the apparent coefficient of friction, mapp ¼ T s=Tn; is quite
different from that for the crack-like mode. Here, at t ¼ 32 ms; mapp is 0.60 at the
front of the frictional sliding tip, very slightly increases to 0.61 over the pulse and
then, with the drop in T s; falls to 0.44. In this case, neither ms nor md serve as bounds
on the apparent coefficient of friction. Behind the leading pulse the apparent
coefficient of friction steadily increases to 0.60 until the trailing pulse is reached. The
magnitude of Tn is nearly constant at S0 ¼ 30MPa over most of the interface but
decreases near the impact edge (0px1p10mm).
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Fig. 10. Distributions along a portion of the interface for Case II—S0 ¼ 30MPa; V imp ¼ 2m=s: (a) The
frictional sliding rate, D _uslip; and the shear traction, T s at t ¼ 32ms and at t ¼ 34ms: The symbols mark
values at integration points along the interface to illustrate the resolution of the discretization. (b) The

shear traction increment, dT s ¼ _T s dt; and the velocity jump across the interface, D _us; at t ¼ 34ms:
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In contrast to the crack-like mode, for the pulse-like mode there is a qualitative
difference between the distributions of D _uslip and D _us along the interface. As seen in
Fig. 10b, which shows distributions of D _us and dT s ¼ _T s dt at t ¼ 34ms; no pulse
occurs in the distribution of D _us: However, there is an abrupt change in D _us at the
location of each pulse. On the other hand, there are pulses in the traction increment
dT s and hence in the elastic contribution to D _us ¼ _T s=Cs: The abrupt change in D _us
corresponds to a pulse in dD _us=dx; i.e. to a ‘weak’ pulse as opposed to the ‘strong’
pulse in D _uslip:
Isochromatic fringe patterns (contours of s1 � s2) at t ¼ 32ms are shown in Fig.

11 where only the stress contours behind the loading wave front are visible in the
region shown. There is a concentration of fringes at approximately x1 ¼ 22mm;
which corresponds to the location of the leading slip pulse. The change in the fringe
spacing and concentration along a shear Mach line of 26� indicates a propagation
speed of about 2800m/s (sin y=cs). The dense set of fringes near the impact site arises
from a slip pulse initiating there.
4.4. Case III: a train of pulses

Fig. 12a shows distributions of frictional sliding rate, D _uslip; and shear traction T s

for a train of pulses (S0 ¼ 10MPa; V imp ¼ 20m=s). The distributions are shown at
two times, at t ¼ 32ms and at t ¼ 33 ms: As in Fig. 10a, the circles indicate the
positions of the integration points at which D _uslip and T s are evaluated. A key
difference between the pulses in Case III and those in Case II is that in Case III the
peak value of D _uslip; which is  120m/s, does not increase with propagation distance
or time. The variations in the peak value of D _uslip seen in Fig. 12a is mainly due to
some pulses attaining their peak value between the plotted integration points.
x1 (mm)

x 2
(m

m
)

0 10 20 30

-10

-5

0

5

10

Fig. 11. Contours of s1 � s2 (isochromatic fringe patterns) at t ¼ 34ms for Case II.
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Typically, a pulse extends over four elements (16 integration points). The slip pulses
at 33ms (dashed lines) lie on top of the pulses at 32ms with a one pulse offset,
illustrating the self-similar propagation of these pulses.
The shear traction along the interface has a mean value of about 7MPa with

oscillations of 1.5MPa. The apparent coefficient of friction, mapp ¼ T s=Tn oscillates
between 0.59 and 0.48 for the slip-pulses behind the leading pulse, but for the leading
pulse the maximum is 0.63. The value of Tn is fairly uniform over the interval shown,
having a maximum of about 14 MPa at x1  45mm and decreasing smoothly to
around 11.5MPa at x1 ¼ 30mm and x1 ¼ 60mm; so that the variation in mapp arises
principally from the oscillations in T s:Due to the direct effect in the friction relation,
there is a lag between the onset and cessation of frictional sliding and the maximum
and minimum values of mapp: The maximum value of 0.59 for mapp is reached 0.43mm
behind the sliding tip for the pulses following the leading pulse and the minimum
value of 0.48 occurs 0.25mm behind the location where D _uslip peaks (for all pulses,
including the leading pulse).
As also seen in Fig. 12a, except for the leading pulse, the shape of the pulses is the

same, where the width of the frictional sliding region (D _uslip40) is 1.33mm and the
width of the region with D _uslip ¼ 0 is 0.92mm. The spacing between the pulses is
2.21mm. The leading pulse has more structure to its front edge, and this structure is
preserved as the pulse propagates.
The velocity jump across the interface, D _us; and the traction increment dT s ¼

_T s dt are shown in Fig. 12b. The traction increment distribution reflects the pulse
structure of D _uslip; while the oscillations in D _us are smoother.
Fig. 13 shows the isochromatic fringe patterns (contours of s1 � s2) at t ¼ 32ms:

At the front of the first pulse at 55mm, a shear Mach wave occurs at 37�;
corresponding to a propagation speed of  cl: Behind the slip front vortex like stress
contours are seen that correspond to the back and front of each pulse together with
shear Mach waves at each transition from slip to stick. Behind the propagating front,
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Fig. 12. Distributions along a portion of the interface for Case III—S0 ¼ 10MPa; V imp ¼ 20m=s: (a) The
frictional sliding rate, D _uslip; and the shear traction, T s at t ¼ 32ms and at t ¼ 33ms: The symbols mark
values at integration points along the interface to illustrate the resolution of the discretization. (b) The

shear traction increment, dT s ¼ _T s dt; and the velocity jump across the interface, D _us; at t ¼ 32ms:
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there is a vortex-like structure. The change in the contours at x2 ¼ 2mm is due to the
change in resolution of field quantities associated with the transition from the
uniform mesh to the coarser, graduated mesh. This calculation was also carried out
for a finer mesh in which the uniform mesh region extends to x2 ¼ 4mm; with the
element size in the uniform region fixed. The results are essentially unchanged, but
the finer mesh results in the details of the stress distribution behind the propagating
front being visible over the larger region resolved.
Distributions along the interface of the displacement jump across the interface,

Dus of the accumulated frictional sliding, Duslip ¼
R t

0 D _uslip dt; and of the apparent
coefficient of friction, mapp ¼ jT s=Tnj; for the crack-like propagation mode (Case I)
and for the train of pulses (Case III) are compared in Fig. 14. In both cases, the
difference between Dus and Duslip is due to the assumed interface elasticity. In Fig.
14a for Case I, both Dus and Duslip vary smoothly along the slipped surface. For Case
III, Fig. 14b, although the displacement jump itself varies smoothly, steps in Duslip
are evident. The elasticity smoothes out the steps in Dus along the interface, but these
are reflected in the oscillatory distribution of T s and therefore mapp along the
interface.

4.5. Case IV: multiple pulses coalescing to form a crack

In Case IV, the values of the interface elastic constants are Cn ¼ 30GPa=m
and Cs ¼ 10GPa=m; one tenth their value in all the other cases. Fig. 15 shows the
slip velocity D _uslip along the interface at 22, 32 and 41ms: Sliding initiates at 14ms
and at 22ms (Fig. 15a) three pulses are observed. The tip of the leading pulse
is at 18mm and the distance between the end of the first pulse and the front of the
second pulse is 3.4mm. As in Cases II and III, the leading pulse includes a
gradual rising part in the front before there is a steep rise in D _uslip whereas the
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second and third pulses do not exhibit such a gradual rise in D _uslip: At 32ms in
Fig. 15b, the tip of the leading pulse has moved to 41mm with the distance
between the first and second pulse decreasing to 0.4mm. During this time the
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average speed of the tip of the leading pulse is  cl and the average speed of the
second pulse is supersonic,  2700m=s: Thus, the second and third sliding pulses
which are traveling at supersonic speeds catch up with the lead pulse and coalesce to
form a single crack-like sliding region as shown in Fig. 15c (at 41ms) and then
continue to travel at cl: This crack-like region expands with time as more pulses are
generated at the impact edge, travel at supersonic speeds and coalesce with the main
sliding region.
Isochromatic fringe patterns (contours of s1 � s2) are shown in Fig. 16a–c, at

22, 32 and 41ms; respectively. The contours are shown for x240 because the
Mach line are clearer in this region. At t ¼ 22ms the tip of the leading pulse is at
18mm as shown by the change in the spacing of the stress contours in Fig. 16a. In
Fig. 16b, the tip has moved to 41mm. There are three regions where an abrupt
change in the density of the contours takes place forming three shear Mach lines at
three angles to the interface as shown in the inset. The intersections of these lines
with the interface are at the locations of the tips of the three sliding pulses shown in
Fig. 16b. The shear Mach angles of 34�; 29:3� and 23:4� correspond to propagation
speeds of 2190, 2560 and 3160m/s for the first, second and third pulses, respectively.
In Fig. 16c, at 41ms; the stress contours show a concentration of fringes only at
60mm corresponding to the sliding tip. At this time the second and third pulses have
coalesced with the first pulse to form a crack-like sliding region propagating at the
longitudinal wave speed. For x1o25mm there are disturbances that are pulses
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Fig. 16. Contours of s1 � s2 (isochromatic fringe patterns) for Case IV. The contour lines are drawn to

focus on details of the distribution for x240: (a) t ¼ 22ms: (b) t ¼ 32ms. (c) t ¼ 48ms: The inset in (b)

indicates the Mach line orientations.
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traveling at supersonic speeds that eventually coalesce with the crack-like sliding
region, thereby expanding it.

4.6. Case V: a pulse-like mode followed by a crack-like mode

In Case V, p ¼ 0:5 and V 1 ¼ 1:0m=s in Eqs. (15) and (17). Sliding initiates as a slip
pulse at 31ms: Fig. 17 shows the distribution of D _uslip along the interface at three
times; t ¼ 32ms; t ¼ 38ms and t ¼ 44:6ms: Also shown is the distribution of the shear
traction, T s; along the interface at t ¼ 44ms: A growing pulse is obtained with the
pulse width decreasing from 8.5mm at t ¼ 32ms to 2.5mm at t ¼ 44ms and the peak
value of D _uslip increases from 155 to 392m/s. The propagation speed of the pulse
varies slightly over the range of times in Fig. 17; 2600m/s at t ¼ 32ms and 2450m/s
at both t ¼ 38ms and t ¼ 44:6ms: After some oscillation behind the growing pulse,
D _uslip is constant at about 21m/s. The shear traction increases to a maximum value
of 23.5MPa at the tip of the pulse, then drops to 18.5MPa in the pulse region, after
which it remains almost constant at 20MPa over the rest of the sliding region. The
apparent coefficient of friction changes from a maximum value of 0.595 at the sliding
tip to a minimum value of 0.47 at the point of maximum frictional sliding rate until it
settles at a steady state value of 0.50 along the rest of the sliding surface.
The isochromatic fringe patterns (contours of s1 � s2) are shown in Fig. 18 at

three times of 32, 38 and 44:6ms: The arrow in each figure points to a line (drawn off
the interface) that indicates the width of the pulse and its position along the
interface. The pulse width decreases as the crack catches up to the pulse with time
and distance. At t ¼ 38ms (Fig. 18b), there are two separate Mach waves
corresponding to the slip pulse and the initiation of crack-like slip. As the pulse
width diminishes in length the tip of the crack-like region approaches the leading tip
of the pulse. From the shear Mach angles, the propagation speed of the back of the
pulse in Fig. 18b is approximately 3500m/s, while the front of the pulse is traveling
at about 2600m/s.
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4.7. Dependence of the sliding mode on the initial compressive stress and impact

velocity

The dependence of the frictional sliding mode on the initial compressive stress, S0;
and the impact velocity, V imp; is shown in Fig. 19. All calculations in Fig. 19 were
carried out using the interface friction properties listed in Table 1 and Cn ¼

300GPa=m; Cs ¼ 100GPa=m: The dashed line indicates the boundary between the
occurrence of crack-like and pulse-like modes. It is near the dashed line that mixed
crack-like and pulse-like modes occur. Quite generally, for low impact velocities and
low values of the applied compressive stress, the crack-like mode is obtained. On the
other hand, for a high magnitude of the initial compressive stress and a sufficiently
low impact velocity, the growing pulse mode occurs.
Fig. 20 illustrates the nature of the transition for a fixed value of S0 and varying

V imp; corresponding to the line A in Fig. 19. In Fig. 20, S0 is fixed at 10MPa and
V imp varies between 2 and 40m/s. Values of D _us; D _uslip; T s and mapp ¼ T s=Tn at
x1 ¼ 16:1mm on the interface are plotted as functions of time. With V imp ¼ 2m=s;
essentially steady values of the velocity jump across the interface, D _us; and the
frictional sliding rate, D _uslip; are attained as seen in Fig. 20a and b, respectively. With
the impact velocity increased to 10m/s, the mode has changed to one involving a
train of pulses, as seen in Fig. 20b. With a further increase in impact velocity, the
pulse amplitude increases as does the pulse frequency. Correspondingly, the
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oscillations in the velocity jump across the interface increase. However, as seen by
comparing the response for V imp ¼ 20m=s with V imp ¼ 40m=s in Fig. 20a, the
amplitude of the oscillations in D _us do not continue to increase with increasing
impact velocity, in contrast to the pulse amplitude in Fig. 20b. Rather, there is an
increase in the ‘elastic’ part of the velocity jump and this is reflected in the increased
magnitude of the shear traction T s in Fig. 20c. The oscillations in the apparent
coefficient of friction, mapp ¼ T s=Tn; increase in magnitude with increasing V imp;
mapp changes from an almost steady value of 0.598 at V imp ¼ 2m=s to mapp oscillating
between 0.598 and 0.470 at V imp ¼ 40m=s: In addition, the frequency of the
oscillations in mapp increases with increasing impact velocity.
The nature of the transition for V imp fixed at 2m/s and with varying S0; the line B

in Fig. 19, is illustrated in Fig. 21. As in Fig. 20, the evolution with time of D _us; D _uslip;
T s and mapp at a fixed point along the interface (x1 ¼ 16:1mm) is shown. With
increasing initial compressive stress, frictional sliding initiates later (Figs. 21a and b).
For both S0 ¼ 6MPa and S0 ¼ 10MPa; crack-like behavior is obtained. The values
of D _us and D _uslip at the beginning of frictional sliding exceed their subsequent steady-
state values, which is a consequence of the direct effect in the rate- and state-
dependent friction relation. With S0 ¼ 16MPa; a train of pulses in frictional sliding
rate (Fig. 21b) occurs, with oscillations both in D _us (Fig. 21a) and in T s (Fig. 21c).
When the compressive load is increased to S0 ¼ 30MPa; steeper and narrower
pulses are obtained, Fig. 21b, and the peak value of D _uslip reaches  820m=s; much
exceeding the scale in Fig. 21b. These slip pulses increase in amplitude as they
propagate and the peak D _uslip can be of the order of cs: For a sufficiently high value
of S0; the closely trailing slip pulses are suppressed. Then, a trailing slip pulse only
occurs after some distance and time has passed so that the pulses are well-separated.
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Such growing pulses have been obtained in studies of sliding between dissimilar
elastic solids using rate- and state-dependent friction laws (Ben-Zion and Huang,
2002; Adda-Bedia and Ben Amar, 2003). It is worth noting that if the scale of
observation is sufficiently small compared with the pulse spacing, only a single pulse
is observed which resembles the slip pulses discussed in relation to earthquakes
(Heaton, 1990).
The nature of the slip pulses that occur when S0 is increased (line B in Fig. 19)

differ from those obtained when V imp is increased (line A in Fig. 19). With fixed S0;
increasing V imp increases the magnitude of the slip pulses while the pulse spacing and
the pulse width decrease. For S0 ¼ 16MPa; it was found that the pulse width to
pulse spacing ratio remained constant with varying V imp and this ratio was equal to
one-half. This behavior is analogous to the oscillatory stick–slip behavior observed
by Baumberger et al. (1994). The extent to which the pulse width to pulse spacing
ratio depends on S0 remains to be determined. In both Figs. 20c and 21c, the peak
values of the apparent coefficient of friction do not increase with increasing V imp

(Fig. 20c) or S0 (Fig. 21c) even though the magnitude of T s does, thus implying that
there is a corresponding increase in Tn:
To illustrate the evolution of sliding in a transition mode, we describe this

evolution for the calculation with S0 ¼ 10MPa; V imp ¼ 7m=s (marked by one of the
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triangles in Fig. 19). Oscillations occur in D _uslip along the interface, with the highest
peak near the sliding tip and decreasing in amplitude behind the tip. When sliding
has progressed about 50mm along the interface, the amplitude of the first three
oscillations is large enough for D _uslip to vanish at the crests leading to sticking
regions (however the maximum value of D _uslip generally remains a small fraction of
an elastic wave speed). The amplitude of the following oscillations is much smaller
and sticking does not occur. Thus, we obtain a crack-like sliding region following
three slip-pulses of decreasing magnitude.
Other loading combinations of S0 and V imp on the transition line in Fig. 19, lead

to similar oscillations in the slip rate or to unsteady behaviors, such as mixed crack-
like and pulse-like sliding modes that evolve with both time and distance. This
behavior is reminiscent of that found in the analysis of spring-slider system obeying a
rate- and state-dependent friction law (Ruina, 1983; Gu et al., 1984) where it was
shown that the transition from steady sliding to stick–slip goes through several
oscillations, period doubling and self-sustained periodic oscillations. Gu and Wong
(1991, 1994) also found this transition to be dependent on the load point driving
velocity in addition to the stiffness and constitutive parameters.
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5. Discussion

The experiments and calculations for symmetric loading with no sliding, permit
the features of the response associated with sliding to be identified. Also, the good
agreement between the experiments and the calculations for symmetric loading
provides confidence that the wave propagation aspects of the experiments are well-
represented in the calculations. Features that are common between the symmetric
loading experiments and the corresponding calculations include the cusp in the
photoelastic fringes at the interface, the formation of a head wave emanating from
the loading wave front and the distortions in the photoelastic stress field behind the
loading wave due to the trapezoidal nature of the imposed loading.
A guideline for assessing mesh resolution (Zheng and Rice, 1998) is that the mesh

spacing (0:3mm along the interface in the uniform mesh region) should be
significantly less than a characteristic length, h�; associated with the friction law,

h�
¼ j2GL0=½pD _uslipðdtss=dD _uslipÞ	j

where G is the shear modulus and tss is the shear stress under steady-state sliding.
For a normal stress of 10MPa, h� attains its minimum of 0:81mm for D _uslip ¼
V 1 ¼ 26m=s: Using D _uslip ¼ V 1 ¼ 7m=s as a representative value for Case I, h�

¼

1:8mm: For Case IV, where the normal stress is  1MPa and D _uslip ranges from
about 10–100m/s, the minimum value of h� is 8:1mm and for much of the velocity
range is significantly greater than that. It is worth noting that it is for Case IV that a
supersonic pulse is obtained. For the other cases, h� typically has values between
those for Cases I and IV.
Several calculations were carried out to assess the mesh dependence of the results.

For Case I (crack-like mode) and for Case II (pulse-like mode), calculations were
carried out with the mesh spacing halved along the interface (0.15mm in the uniform
region) so that the number of elements was doubled. For Case I, with the finer mesh
the transition region at the sliding tip consisted of four elements (16 integration
points) as opposed to two elements (8 integration points) with the coarser mesh. The
values of D _uslip obtained from the two calculations nearly coincide. The mean values
of the curves of V tip versus time computed using the finer mesh also essentially
coincide with the curves in Fig. 6 but the oscillations about the mean differ
somewhat. In addition, the effect of mesh size was further explored for a crack-like
mode and a pulse like mode using frictional parameters that differ from those used in
Cases I and II. The reference mesh shown in Fig. 1b and two other meshes were used
for this. All the meshes have the smallest elements near the interface and the impact
edge as for the reference mesh in Fig. 1b. The coarse mesh consisted of 1152 elements
and 4812 degrees of freedom, with the smallest element size 2:1mm
 1:0mm: The
fine mesh consisted of 56,832 elements and 229,364 degrees of freedom, with the
smallest element size 0:075mm
 0:1mm: The slip rate at a point along the interface
was plotted as a function of time for both meshes. In the calculation with the crack-
like sliding mode, the results from all three calculations are in very good agreement
for the propagation speed except that increased fluctuations around a steady slip rate
occur with the coarse mesh. For the pulse-like mode calculation, there is only a small
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difference between the calculations using the three meshes for the predicted
magnitude and timing of the pulses. For the train of pulses sliding mode, calculations
were carried out for finite element meshes with interface mesh spacings of 0:15mm;
0:30mm and 0:40mm: The pulse shape, width and spacing were virtually identical in
the three calculations, with a typical slip pulse in these meshes spanning 37, 19 and
14 integration points, respectively.
The calculations are carried out neglecting geometry changes so that the

displacement jumps Dun and Dus pertain to differences between points that are on
opposite sides of the interface in the initial configuration. Possible effects of
accounting for geometry changes, with the jumps then pertaining to points on
opposite sides of the interface in the current configuration, remain to be determined.
It is however worth noting that at least in Fig. 14 when Dus is relatively large, the
shear traction is relatively uniform.
The values used for the interface stiffnesses Cn and Cs in Eqs. (7) and (8) play a

significant role both for symmetric loading (with no sliding) and for asymmetric
loading (with frictional sliding). The values used in most of the calculations, Cn ¼

300GPa=m and Cs ¼ 100GPa=m; give rather good agreement with the experiments
for symmetrically loaded specimens where sliding does not occur. In order to assess
the dependence of the sliding mode on the interface stiffness values employed,
asymmetric loading calculations were carried out using various values of Cn and Cs:
For given values of S0 and V imp; the frictional sliding mode that occurs depends on
Cn and Cs:With Cn ¼ 3000GPa=m and Cs ¼ 1000GPa=m; only crack-like behavior
was obtained for the range of values of S0 and V imp used in Fig. 19. On the other
hand, various calculations were carried out with Cn ¼ 30GPa=m and Cs ¼

10GPa=m and a train of pulses was not obtained, although as shown for Case IV
pulses coalescing to form a crack-like sliding mode did occur. Also, pulse steepening
became more pronounced when Cn and Cs were decreased.
The elasticity of the interface plays a fundamental role because the frictional slip

D _uslip is an internal variable determined by the frictional law (analogous to the plastic
strain rate in plasticity theory). The observable quantity is the jump in displacement
rate across the interface, D _us: The pulses occur in D _uslip not in D _us and, hence,
according to our numerical results, are not directly observable in terms of a velocity
jump distribution along an interface. What is observable is a pulse-type traction rate
distribution (Figs. 10b and 12b). At a given spatial location, the oscillatory nature of
the pulse-like modes is seen in the time evolution of D _us (Fig. 20a).
Calculations modeling dynamic slip in earthquakes, e.g. Cochard and Madariaga

(1994, 1996), Perrin et al. (1995), Beeler and Tullis (1996) (see also Ben-Zion, 2001;
Rice, 2001; Nielsen and Madariaga, 2003), exhibit both crack-like and pulse-like
sliding modes. In analyzing conditions that set the mode of sliding, Zheng and Rice
(1998) considered the special case of identical material properties on both sides of the
slip surface. Specifically, Zheng and Rice (1998) considered elastic half-spaces that
are subject to a uniform shear stress tb

0 outside a perturbed region where slip
nucleates. The criterion delineating between crack-like and pulse-like sliding involves
the magnitude of tb

0; the elastic moduli and shear wave speed of the half-spaces, the
sliding speed and the sliding speed dependence of the interface friction law. The
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criterion of Zheng and Rice (1998) predicts that low values of tb
0 favor pulse-like

sliding and higher values crack-like sliding.
The circumstances considered here are quite different from those in Zheng and Rice

(1998). In particular, it is important to note that the parameters in Fig. 19 are the initial
compressive stress and the impact velocity. In this parameter space, a clear demarcation
is found between the regime where the crack-like and pulse-like modes occur; a low
initial compressive stress and/or a low impact velocity favor the crack-like mode.
The experiments and calculations exhibit a variety of common features including:
(i)
 Direct calculation from the time history of the position of the sliding tip and
Mach lines in the contours of s1 � s2 indicate that the sliding tip travels at a
speed greater than

ffiffiffi
2

p
cs and that a trailing pulse travels faster than cl:
(ii)
 The fringe patterns in front of the sliding region have similar characteristic
shapes.
(iii)
 Crack-like sliding occurs at low impact velocities and a sliding mode with a
pulse is obtained at higher impact velocities.
(iv)
 Two shock waves eventually merge into a single shock wave as the trailing shock
catches up to the leading one. The tip of the trailing pulse travels at a speed
exceeding cl:
The calculations exhibit two sliding modes with two approaching shock waves.
One involves trailing pulses traveling faster than the leading pulse that eventually
coalesce to form one sliding region (Figs. 15 and 16). The other involves a steepening
and narrowing pulse followed by a crack-like sliding region (Figs. 17 and 18).
There is some evidence in other contexts regarding the range of sliding modes that

emerge from our calculations, more specifically regarding the pulse and pulse train
modes of frictional sliding. Rubio and Galeano (1994) carried out experiments on
sheared gels sliding along smooth glass surfaces and observed sliding via
propagation of a quasi-periodic pattern of sliding zones of finite width separated
by non-moving regions, having a propagation speed of the order of cl of the gel. This
is consistent with our observations of relative speeds of pulse propagation that are
three order of magnitude higher than the imposed impact velocities. The experiments
of Rubio and Galeano (1994) motivated an analysis by Caroli (2000) of sliding of a
viscoelastic solid on a rigid substrate with a rate and state friction law that showed a
pulse train. Sliding between a rectangular polyurethane slab and a compressed
araldite plate was studied experimentally by Mouwakeh et al. (1991). The velocity
measured at a fixed spatial point was strongly oscillatory. Also, the measured
traction exhibited oscillations. The traction versus time curve in Mouwakeh et al.
(1991) resembles one of the oscillatory curve in Fig. 21c. The velocity versus time
curve is qualitatively similar to the intermediate curves in Fig. 21b. However it is
unclear whether D _uslip or D _us is plotted in Mouwakeh et al. (1991, Fig. 5a).
Fiber pull-out experiments exhibit a variety of complex frictional phenomena, e.g.

Tsai and Kim (1996) and Li et al. (2002). In particular, Tsai and Kim (1996) observed
three frictional sliding modes: steady sliding of the entire contact surface, stick–slip
sliding of the entire contact surface, and sliding through the generation of concentrated
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sliding pulses. In one set of experiments, with sliding along the entire contact surface, the
pull-out force was steady for a low interface pressure and was oscillatory for a high
interface pressure, analogous to the behavior in our calculations where a crack-like
sliding mode occurs for low values of S0 and a pulse-like mode for high values of S0:
However, Tsai and Kim (1996) found that the oscillation amplitude decreased with
increasing pull-out speed. This trend, also found in Baumberger et al. (1994) and Povirk
and Needleman (1993), under quasi-static loading conditions, is opposite to what occurs
in our analyses under dynamic loading conditions.
Brune et al. (1993) and Anooshehpoor and Brune (1994) observed two modes of

sliding along the interface between identical foam rubber blocks; one involving wrinkle-
like waves and the other a crack-like sliding mode. Characteristics of the wrinkle-like
wave mode in these experiments are similar to those obtained for slip-pulses in our
calculations; for example, an increasing normal component of particle motion with
increasing normal stress which is analogous to the slip-pulse amplitude increasing with
S0 in our calculations. Interestingly, it was found that the frictional heating did not
change with shear stress in the wrinkle-like wave mode whereas it increased linearly with
shear stress in the crack-like mode (see also Andrews and Ben-Zion, 1997, Fig. 12). In
experiments on sliding of two dissimilar blocks of foam rubber, Anooshehpoor and
Brune (1999) observed that sliding occurred through a series of multiple opening pulses.
They also found that the sharpness and the amplitude of the pulses either increased or
decreased with time and was not steady. Such opening pulses, often referred to as
Schallamach (1971) waves, have been observed experimentally in various bimaterial
systems (e.g. Schallamach, 1971; Anooshehpoor and Brune, 1999) and in simulations
(Coker et al., 2003). There is evidence for slip pulses, on which attention is focused here,
in the experiments of Mouwakeh et al. (1991) and Tsai and Kim (1996).
Fig. 14 shows that the displacement distribution from a pulse train slip mode and

from a crack-like slip mode are quite similar. This might be the reason that there is
ample experimental evidence of slip pulses in soft materials such as gels, whereas
there is no conclusive experimental evidence for slip pulses in engineering materials
where the displacement magnitudes are very small compared to those in soft
materials. However, the shear traction distribution along the interface in Fig. 14 does
provide an indicator of the slip-mode. The variation of the shear resistance and the
step increase in displacement in Fig. 14 is similar to the response seen in rock friction
experiments (Tullis, 1996) and in fiber pull-out experiments (Tsai and Kim, 1996).
Since the resulting slip from a train of pulses is hard to distinguish from that
occurring with the crack-like slip mode, our results suggest the possibility that slip
pulses may be more common than previously appreciated. It remains to be
determined whether there is a significant difference between the heat generation
associated with the pulse-train mode and that associated with the crack-like mode.
6. Conclusions

Frictional sliding between two Homalite plates subject to a compressive stress was
investigated both experimentally and computationally. Sliding under shear loading
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was induced by impacting one plate parallel to the interface. The experiments yield
information on the sliding speed and the stress state in the material using dynamic
photoelasticity. A plane stress initial/boundary value problem simulating the
experiments is analyzed using a framework where sliding is modeled by a rate-
and state-dependent frictional interface constitutive relation.
�
 The experiments exhibit both pulse-like and crack-like modes of sliding.

�
 In the experiments, the speed of the leading pulse or the leading edge of the crack-
like sliding region ranges from somewhat above

ffiffiffi
2

p
cs to cl: This propagation

speed increases with increasing impact velocity and decreasing compressive stress.
A speed exceeding cl was seen for a trailing pulse.
�
 A variety of frictional sliding modes were obtained in the calculations, depending
on the initial compressive stress, the impact velocity and the interface
characterization: a crack-like mode; a pulse-like mode with well-separated pulses
that increase in amplitude; and a train of pulses that propagate with an essentially
constant amplitude. In addition, combinations of these modes occurred as well as
transitions between modes. This variety of sliding modes emerges even though
there is no elastic mismatch across the interface.
�
 The slip resulting from the pulse-train mode and that resulting from the crack-like
mode are hard to distinguish.
�
 In all calculations the speed of the leading pulse or the leading edge of the crack-
like sliding region exceeds

ffiffiffi
2

p
cs and is close to (or slightly exceeds) cl: As in the

experiments, trailing pulses with a speed exceeding cl are found.

�
 The elasticity of the interface plays a significant role in setting the mode of sliding.

�
 The range of sliding modes obtained appear to be generic, arising in a wide variety
of configurations and applications, and at a wide variety of size scales.
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Appendix. Time integration of the friction law

The equations are integrated in time using of a rate tangent method (Peirce et al.,
1984) and automatic time step control. The sliding velocity, D _uslip; in the interval
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½t; t þ dt	; is expressed as a linear combination of its values at t and t þ dt via

D _uslip ¼ ð1� gÞD _uslipðtÞ þ gD _uslipðt þ dtÞ; (22)

where g is a chosen integration parameter that can range in value from 0 to 1.
A first order expansion of D _uslip in terms of T s; y1; y2; and y0 gives

D _uslipðt þ dtÞ

¼ D _uslipðtÞ þ dt
qD _uslip
qjT sj

sgnðT sÞ _T s þ
qD _uslip
qy0

_y0 þ
qD _uslip
qy1

_y1 þ
qD _uslip
qy2

_y2

� 	
;

ð23Þ

where all derivatives are evaluated at t.
Combining (23) with (8) gives

_T s ¼ Ctan
s D _us � _Rp; (24)

with

Ctan
s ¼

Cs

1þ gdt
qD _uslip
qjT sj

Cs

(25)

and

_Rp ¼ Ctan
s sgnðT sÞ D _uslipðtÞ þ gdt

qD _uslip
qy0

_y0 þ
qD _uslip
qy1

_y1 þ
qD _uslip
qy2

_y2

� 	
: (26)

The partial derivatives in Eq. (26) are

qD _uslip
qjT sj

¼
mV 0b

m�1

�Tngðy0Þ
; (27)

qD _uslip
qy0

¼
�mV 0b

m

gðy0Þ
qg

qy0
; (28)

qD _uslip
qy1

¼
qD _uslip
qy2

¼ �
mV 0b

m

ðy1 þ y2Þ
; (29)

where gðy0Þ and b are given by Eqs. (15) and (18) and

qg

qy0
¼

ðms � md Þ
p

y0

L0

V1y0

� 	p

exp �
L0

V 1y0

� 	p
 �
Q1=m

þ m�
L0

mV 0y
2
0

1

Q1=mþ1
: (30)

Here,

Q ¼
L0

V0y0
þ 1; (31)

m� ¼ md þ ðms � mdÞ exp �
L0

V 1y0

� 	p
 �
: (32)
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The integral along the interface in Eq. (1) is written as the sum over linear
displacement interface elements. All field quantities and constitutive state variables
are known at time t. Also, the values of D _un and D _us have been determined from
solving Eq. (9). Thus, Dun and Dus are know at time t þ dt: Then, at a given
integration point along the interface:
1.
 Calculate D _us ¼ ½Dusðt þ dtÞ � DusðtÞ	=dt and D _un ¼ ½Dunðt þ dtÞ � DunðtÞ	=dt:

2.
 If Dunðt þ dtÞ4S0=Cn then set Tn ¼ T s ¼ 0 and go to the next integration point.

3.
 Using the values for the state variables at time t, calculate gðy0Þ:

4.
 Compute

b ¼
jT sj

gðy0Þðy1 þ y2Þ
: (33)
5.
 If bo1 then D _uslip ¼ 0: Go to 7.

6.
 If b41 calculate Ctan

s and _Rp in Eq. (24).

7.
 Update the tractions and state variables via

Tkþ1
n ¼ Tk

n þ
_Tn dt; (34)

Tkþ1
s ¼ Tk

s þ
_T s dt; (35)

ykþ1
i ¼ yk

i þ
_yi dt; i ¼ 0; 1; 2: (36)
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