
Journal of Elasticity 65: 87–129, 2001.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

87

A Method Based on the Radon Transform for
Three-Dimensional Elastodynamic Problems
of Moving Loads

H.G. GEORGIADIS� and G. LYKOTRAFITIS
Mechanics Division, National Technical University of Athens, 1 Konitsis Street, Zographou
GR-15773, Greece. E-mail: georgiad@central.ntua.gr

Received 14 June 2001; in revised form 6 December 2001

Abstract. An integral transform procedure is developed to obtain fundamental elastodynamic three-
dimensional (3D) solutions for loads moving steadily over the surface of a half-space. These solutions
are exact, and results are presented over the entire speed range (i.e., for subsonic, transonic and
supersonic source speeds). Especially, the results obtained here for the tangential loads (one of these
loads is along the direction of motion and the other is orthogonal to the direction of motion) are quite
new in the literature. The solution technique is based on the use of the Radon transform and elements
of distribution theory. It also fully exploits as auxiliary solutions the ones for the corresponding plane-
strain and anti-plane shear problems (the latter problems are 2D and uncoupled from each other). In
particular, it should be noticed that the plane-strain problem here is completely analogous to the
original 3D problem, not only with respect to the field equations but also with respect to the bound-
ary conditions. This makes the present technique more advantageous than other techniques, which
require first the determination of a fictitious auxiliary plane-strain problem through the solution of an
integral equation. Our approach becomes particularly simple when there is no angular dependence in
the boundary conditions (i.e., when axially symmetric problems regarding their boundary conditions
are considered). On the contrary, no such constraint needs to be fulfilled as regards the material
response (and, therefore, the governing equations of the problem) and/or also possible loss of ax-
isymmetry due to the generation of shock (Mach-type) waves in the medium. Therefore, the solution
technique can easily deal with general 3D problems having a largely arbitrary radial dependence in
the boundary conditions and involving: (i) material anisotropy in static and dynamic situations, and
(ii) asymmetry caused by changes in the nature of governing PDEs due to the existence of different
velocity regimes (super-Rayleigh, transonic, supersonic) in dynamic situations.

Key words: elastodynamics, moving loads, three-dimensional problems, Rayleigh waves, Radon
transform, distributions.

1. Introduction

The steady-state elastodynamic problem of moving loads over the surface of a
half-space has an interesting history over the last 50 years. It also enjoys impor-
tant applications in the areas of Contact Mechanics and Wave Propagation (see,
e.g., [1–7]). The simpler 2D problem was dealt with by Sneddon [8], Cole and
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Huth [9], and Georgiadis and Barber [10], among others, whereas the more difficult
3D problem by Eason [11], Lansing [6] and Barber [12]. In particular, the work
in [10] corrects the Cole–Huth solution in the transonic range (the range where the
velocity of the moving load is between the shear and longitudinal wave velocities),
the work in [12] presents a superposition technique that reduces the original 3D
problem to an auxiliary 2D problem, whereas the works in [6] and [11] employ
double Fourier transforms. The latter two studies involve, however, a rather com-
plicated analysis. Also, the study by Eason [11] considers both a normal load and a
tangential load that has the direction of motion. However, this study is restricted to
the sub-Rayleigh velocity range only. The studies by Lansing [6] and Barber [12]
consider only normal concentrated loading but give results for the entire speed
range. Finally, Brock and Rodgers [13] solved recently the more general ther-
moelastic 3D problem in the sub-Rayleigh range, via double two-sided Laplace
transforms. Thus, it seems that there are no results available in the literature for
the super-Rayleigh regime in the case of a tangential load having the direction of
motion and for any velocity regime in the case of a tangential load that is orthogonal
to the direction of motion.

The present study develops a method based on the Radon transform [14–16]
and elements of distribution theory [17–19] to obtain a complete solution to the
3D steady-state problem of moving loads over the surface of an elastic half-space.
The method fully exploits the solutions of corresponding 2D problems as auxil-
iary ones (these are two uncoupled problems, one plane-strain and one anti-plane
shear). Indeed, after establishing the correspondence principle connecting the 3D
problem with the two auxiliary problems, the solution to the original problem
follows by performing first a coordinate transformation and then taking the in-
verse Radon transform of the known 2D solutions. Results are presented over the
entire speed range (i.e., for sub-Rayleigh, super-Rayleigh/subsonic, transonic and
supersonic speeds of the loads) and for both normal and tangential loading. The
tangential loads are both in the direction of motion and orthogonal to that direction.
In this way, not only a methodology is introduced here for attacking more general
problems than the present 3D problem of pure elastic response of a half-space to
moving surface loads (like, e.g., the corresponding coupled thermoelastic problem
considered by the authors elsewhere [20] or problems involving moving indenters),
but our results also fill a gap in the existing literature since we consider the cases
of tangential loads and derive the expressions of tangential displacements in both
cases of vertical and tangential loads.

It should be mentioned, of course, that another method which reduces 3D prob-
lems to 2D auxiliary ones, via superposition, was earlier introduced by Smirnov
and Sobolev (see, e.g., [21, 22, 12]). This method, however, requires first the
determination of a fictitious auxiliary plane-strain problem, which is obtainable
only through the solution of an integral equation of the Abel type. Also, the so-
lution to the aforementioned problem probably cannot be readily available in the
literature since this auxiliary problem is somewhat artificial, as relative experience
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indicates. On the contrary, it seems that the use of the Radon transform combined
with a coordinate transformation directly leads to a reduction to a 2D situation
that constitutes the analogue problem of the original 3D one. More specifically,
it is shown that the corresponding plane-strain problem here is completely analo-
gous to the original 3D problem, not only w.r.t. the field equations but also w.r.t.
the boundary conditions. This makes the present technique (which is not based
on explicit superposition-type arguments) more direct than the Smirnov–Sobolev
technique.

Regarding the form of presentation of our results, we chose to give the results
for the surface displacements in integral form, in most of the cases. Numerical
evaluation of the integrals present no difficulty and it is performed by the numeri-
cal algorithms of MATHEMATICA™. Analytical considerations on these integrals
(e.g., study of possible singularities of the integrands) are provided in the paper
and show indeed that the integrals are amenable to a direct numerical treatment.
Evaluating the integrals in closed analytical forms is possible only in the case of a
normal displacement due to a normal force. This was done before by Barber [12]
through some rather elaborate operations based on partial-fraction expansions and
use of the Table of Gradshteyn and Ryzhik (see the Appendix of [12]). Our attempts
to follow this procedure in the other cases treated here failed because the reduced
integral forms are not available in the aforementioned Table nor they can be tackled
analytically by MATHEMATICA™. However, nowadays, numerical treatment of
integrals is routine and even if the present solution is utilized as a Green’s function
in a Boundary Integral Equation scheme such a treatment poses no difficulty in
the code. Finally, we emphasize that both techniques, the one based on the Radon
transform and the other based on superposition, provide the results in integral form;
further treatment (either analytical or numerical) of the integrals has no relation
with the techniques themselves.

Our approach becomes particularly simple when there is no angular dependence
in the boundary conditions (i.e., when axially symmetric problems regarding their
boundary conditions are considered). On the contrary, no such constraint needs
to be fulfilled as regards the material response (and, therefore, the governing equa-
tions of the problem) and/or also possible loss of axisymmetry due to the generation
of shock (Mach-type) waves in the medium. Therefore, the solution technique can
easily deal with general 3D problems having a largely arbitrary radial dependence
in the boundary conditions and involving: (i) material anisotropy in static and dy-
namic situations, and (ii) asymmetry caused by changes in the nature of governing
PDEs due to the existence of different velocity regimes (super-Rayleigh, transonic,
supersonic) in dynamic situations. The method still works in the case that the ex-
ternal loading is not axially symmetric but now the 2D auxiliary problems are not
direct analogues of the original 3D problem.

In closing, we should also mention that interesting applications of the Radon
transform in elasticity problems were presented before by Willis [23], Wang and
Achenbach [24], and Shmegera [25], among others.
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2. Problem Statement

Consider a linearly elastic isotropic body in the form of a 3D half-space x3 � 0.
This body is initially at rest but at time t = 0 a moving load starts to act upon it.
The concentrated point load has components (S, T , P ) along the axes (x1, x2, x3),
respectively, and moves under a constant velocity V over the surface x3 = 0 and
along the x1-direction (see Figure 1). The equations of motion and the stress–strain
relations with respect to a fixed Cartesian coordinate system O ′xj (j = 1, 2, 3) are
written as

µ∇2u + (λ + µ)∇(∇ · u) = ρ
∂2u
∂t2

, (1a)

σ = µ(∇u + u∇) + λ(∇ · u)1, (1b)

where u is the displacement vector with components uj , σ is the stress tensor with
components σij (i, j = 1, 2, 3), 1 is the identity tensor, ∇ is the gradient operator,
∇·u is the 3D dilatation, ∇2 = (∂2/∂x2

1 )+(∂2/∂x2
2 )+(∂2/∂x2

3) is the 3D Laplacian
operator, (λ, µ) are the Lamé constants, and ρ is the mass density.

We now introduce the standard steady-state assumption (see, e.g., [26, 27, 12,
13]) according to which a steady stress and displacement field is created in the
medium w.r.t. an observer situated in a frame of reference attached to the mov-
ing load, if this source has been moving steadily for a sufficiently long time. In
this way, any transients can reasonably be avoided (therefore gaining considerable

Figure 1. Point normal and tangential loads moving under constant velocity V over the sur-
face of an elastic half-space. O′x1x2x3 is a fixed Cartesian coordinate system and Oxyz is a
moving Cartesian coordinate system attached to the loads.
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simplification in the analysis) and, moreover, upon introduction of the Galilean
transformation

x = x1 − V t, y = x2, z = x3, (2)

the boundary conditions become independent of t and the variables (x1, t) enter
the problem only in the combination (x1 − V t). Furthermore, in the new moving
Cartesian coordinate system Oxyz, partial derivatives w.r.t. t are neglected and
(1a) can be written as

∇2u + (m2 − 1)∇(∇ · u) − m2c2 ∂
2u

∂x2
= 0, (3)

where m = VL/VT with VL = [(λ + 2µ)/ρ]1/2 and VT = (µ/ρ)1/2 being, re-
spectively, the longitudinal (L) and transverse (T) wave speeds, c ≡ ML = V/VL

and mc ≡ MT = V/VT are the two Mach numbers, (ux, uy, uz) are the compo-
nents of the displacement vector, ∇ · u = (∂ux/∂x) + (∂uy/∂y) + (∂uz/∂z), and
∇2 = (∂2/∂x2) + (∂2/∂y2) + (∂2/∂z2).

Finally, the boundary conditions of the problem take the form (see Figure 1)

σzz(x, y, z = 0) = −Pδ(x)δ(y), (4a)

σzx(x, y, z = 0) = −Sδ(x)δ(y), (4b)

σzy(x, y, z = 0) = −T δ(x)δ(y), (4c)

which hold for −∞ < x < +∞ and −∞ < y < +∞. In the above equations,
(σzx, σzy, σzz) are components of the stress tensor, and δ(·) is the Dirac delta distri-
bution. The objective of the ensuing analysis is to determine the displacement field
for the problem described by equations (2)–(4).

3. Basic Radon-Transform Analysis

The solution of the previous problem will be obtained through a novel technique
based on the Radon transform (see, e.g., [14–16]) and pertinent coordinate trans-
formations. This general procedure reduces the original 3D problem to a pair of
auxiliary problems, i.e., a corresponding 2D plane-strain problem and a 2D anti-
plane shear problem. As will become apparent below, after establishing the corre-
spondence principle between the 3D problem and the two auxiliary problems, the
solution to the original problem follows simply by performing first a coordinate
transformation and then taking the inverse Radon transform of the known plane-
strain and anti-plane shear solutions. Since 2D problems are in general easier than
their 3D counterparts, solutions to the auxiliary problems can be already available
in many cases. Finally, the inversion operation relies upon results of distribution
theory.



92 H.G. GEORGIADIS AND G. LYKOTRAFITIS

Figure 2. Geometry for the 2D Radon transform of functions in the xy-plane. The symbol L

denotes all straight lines in the plane.

The 2D Radon transform of a function f (r), with |r| = (x2 + y2)1/2, is defined
as

�(f (r)) ≡ f̃ (q, ω) =
∫ ∫

f (r)δ(q − n · r) dr =
∫
L

f (x, y) ds

=
∫ +∞

−∞

∫ +∞

−∞
f (x, y)δ(q − x cos ω − y sin ω) dx dy, (5)

where L denotes all straight lines in the plane Oxy (see Figure 2), and ds is the
infinitesimal length along such a line. The lines L are defined by n · r = q, with
n ≡ (nx, ny) = (cos ω, sin ω), and the Radon transform is in fact the integral of
f (r) over all these straight lines in the plane.

The following three properties of the Radon transform are utilized in the present
work:

(i) The linearity property is expressed as

�(C1f1(r) + C2f2(r)) = C1f̃1(q, ω) + C2f̃2(q, ω), (6)

where (C1, C2) are constants.
(ii) Rules for derivative transformations are written as

�
(

∂f

∂xj

)
= nj

∂f̃ (q, ω)

∂q
, (7)

�
(

∂2f

∂xj∂xk

)
= njnk

∂2f̃ (q, ω)

∂q2
, �(∇2f ) = ∂2f̃ (q, ω)

∂q2
, (8a,b)

where the indices (j, k) take the values 1 and 2, x1 ≡ x, x2 ≡ y, and ∇2 is
now the 2D Laplace operator.
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(iii) The transform of multiplication of Dirac delta distributions is

�(
δ(x) · δ(y)) = δ(q). (9)

Further, the inverse 2D Radon transform is given by

f (x, y) = f (r, ϕ) = − 1

4π2

∫ 2π

0

( ∫ +∞

−∞
∂f̃ (q, ω)

∂q

× PF
(

1

q − r · cos(ω − ϕ)

)
dq

)
dω, (10)

where the symbol PF() stands for the principal-value pseudo-function (or dis-
tribution) [17, 19] denoting that the inner integral is interpreted in the Cauchy
principal-value sense [17, 28] due to a pole of the function inside the parenthesis.
Equivalently, this distribution can be defined as

〈
PF(1/x), φ

〉 = lim
ε→0

∫
|x|�ε

φ(x)

x
dx,

where 〈·, ·〉 denotes the inner product of distributions, ε is a positive real number
and φ is a test function. In the analysis below, the case of more than one pole
singularities in the same integrand (i.e., the case of a product of distributions)
frequently appears and, therefore, the latter notation proves to be convenient.

Next, the two auxiliary problems will be obtained as transformed problems
of the original problem. Operating with the Radon transform (5) to equations (3)
and (4), and using the properties (6)–(9) gives

∂2ũx

∂q2
+ ∂2ũx

∂z2
+ (m2 − 1)nx

∂

∂q

(
nx

∂ũx

∂q
+ ny

∂ũy

∂q
+ ∂ũz

∂z

)
− m2c2

x

∂2ũx

∂q2
= 0,

(11a)
∂2ũy

∂q2
+ ∂2ũy

∂z2
+ (m2 − 1)ny

∂

∂q

(
nx

∂ũx

∂ q
+ ny

∂ũy

∂ q
+ ∂ũz

∂z

)
− m2c2

x

∂2ũx

∂q2
= 0,

(11b)
∂2ũz

∂q2
+ ∂2ũz

∂z2
+ (m2 − 1)

∂

∂z

(
nx

∂ũx

∂q
+ ny

∂ũy

∂q
+ ∂ũz

∂z

)
− m2c2

x

∂2ũz

∂q2
= 0,

(11c)

σ̃zz(q, ω, z = 0) = −P · δ(q), (12a)

σ̃zx(q, ω, z = 0) = −S · δ(q), (12b)

σ̃zy(q, ω, z = 0) = −T · δ(q), (12c)

where cx = cnx . Now, as Figure 3 depicts, we perform a rotation of the original
(x, y, z) coordinate system through an angle ω about the z-axis. In the new (q, s, z)

coordinate system, equations (11)–(12) are expressed as
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Figure 3. Initial xy-system and rotated qs-system.

∂2ũq

∂q2
+ ∂2ũq

∂z2
+ (m2 − 1)

∂

∂q

(
∂ũq

∂q
+ ∂ũz

∂z

)
− m2c2

x

∂2ũq

∂q2
= 0, (13a)

∂2ũz

∂q2
+ ∂2ũz

∂z2
+ (m2 − 1)

∂

∂z

(
∂ũq

∂q
+ ∂ũz

∂z

)
− m2c2

x

∂2ũz

∂q2
= 0, (13b)

(1 − m2c2
x)

∂2ũs

∂q2
+ ∂2ũs

∂z2
= 0, (14)

σ̃zz(q, ω, z = 0) = −P · δ(q), (15a)

σ̃zq(q, ω, z = 0) = −(S cos ω + T sin ω)δ(q), (15b)

σ̃zs(q, ω, z = 0) = (S sin ω − T cos ω)δ(q), (16)

where the following relations have been used
 ũz

ũq

ũs


 =


 1 0 0

0 cos ω sin ω

0 − sin ω cos ω





 ũz

ũx

ũy


 , (17a)


 σ̃zz

σ̃zq

σ̃zs


 =


 1 0 0

0 cos ω sin ω

0 − sin ω cos ω





 σ̃zz

σ̃zx

σ̃zy


 . (17b)

A crucial point of our analysis is the observation that the rotated Radon-trans-
formed stresses and displacement gradients are related in exactly the same manner
as in the physical (non-transformed) plane of the 2D plane-strain problem. Indeed,
it can be proved, in view of (7) and (17), that the following relations hold
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σ̃zz = (λ + 2µ)
∂ũz

∂z
+ λ

∂ũq

∂q
, (18a)

σ̃zq = µ(
∂ũz

∂q
+ ∂ũq

∂z
), (18b)

σ̃zs = µ
∂ũs

∂z
, (19)

which obey the transformed Hooke’s law σ̃ = µ(∇ũ + ũ∇) + λ(∇ · ũ)1, where ũ
and σ̃ have the components (ũz, ũq , ũs) and (σ̃zz, σ̃zq, σ̃zs, . . .), respectively.

Now, one may observe that equations (13), (15) and (18) form a 2D plane-strain
problem in the (q, z) coordinate system. This problem (first auxiliary problem)
involves a linearly elastic body in the form of the half-plane z � 0 that is dis-
turbed by the steady-state motion of a concentrated plane line load. The load has
components P and (S cos ω + T sin ω) and is moving along the q-axis with ve-
locity Vq ≡ V cos ω. On the other hand, equations (14), (16) and (19) form a 2D
anti-plane shear problem in the (s, z) coordinate system. This problem (second
auxiliary problem) involves a linearly elastic body in the form of the half-plane
z � 0 that is disturbed by the steady-state motion of a concentrated anti-plane line
load. In this case, the load (S · sin ω − T · cos ω) is moving along the q-axis with
velocity Vq ≡ V cos ω. Figure 4 depicts schematically the two auxiliary problems
in the particular case of P and S loads.

(a)

(b)

Figure 4. First (a) and second (b) auxiliary problems in the qz-plane. The case of (P, S)

loading is considered.
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4. Results for the First Auxiliary Problem

In this section, we record the solution of the first auxiliary problem (2D plane-strain
problem) that was obtained before in the studies by Georgiadis and Barber [1, 10],
and Brock and Georgiadis [29] (in the latter case as a limit of the more general
coupled thermoelastic solution). Quantities in the physical plane in this auxiliary
problem are, of course, transformed quantities in the Radon-transform plane of the
original 3D problem. In using these results, care should be exercised in properly
interpreting the 2D solution in the rotated coordinate system (i.e., in retaining the
physics of the solution in the new system). More details on the latter issue are given
in the end of the present section.

By superposition, the total normal displacement at the surface, in the entire
speed range, is written as

ũz(q, ω, z = 0) = ũ(P )
z (q, ω, z = 0) + ũ(S)

z (q, ω, z = 0)

+ ũ(T )
z (q, ω, z = 0), (20)

where the normal surface displacement ũ(P )
z due to a normal load P is given by

ũ(P )
z (q, ω, z = 0) = P

µ

[
F

(P)

1 (MT cos ω) · ln(|q|)

− F
(P)
2 (MT cos ω)

2
· sgn

(
sgn(cos ω) · q)]

, (21)

the normal displacement ũ(S)
z due to a tangential load S cos ω by

ũ(S)
z (q, ω, z = 0) = S cos ω · sgn(cos ω)

µ

[
F

(S)
1 (MT cos ω) · ln(|q|)

− F
(S)

2 (MT cos ω)

2
· sgn(sgn(cos ω) · q)

]
, (22a)

and the normal displacement ũ(T )
z due to a tangential load T sin ω by

ũ(T )
z (q, ω, z = 0) = T sin ω · sgn(sin ω)

µ

[
F

(S)

1 (MT cos ω) · ln(|q|)

− F
(S)

2 (MT cos ω)

2
· sgn(sgn(cos ω) · q)

]
, (22b)

where sgn( ) is the signum function, and

F
(P)
1 (MT) =




M2
T(1 − M2

L)
1/2

πR(MT)
≡ F

(P)
11 (MT), V < VT,

M2
T(2 − M2

T)
2(1 − M2

L)
1/2

πK(MT)
≡ F

(P)
12 (MT), VT < V < VL,

0 ≡ F
(P)
13 (MT), VL < V,

(23)
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F
(P)
2 (MT) =




0 ≡ F
(P)
21 (MT), V < VT,

4M2
T(1 − M2

L)(M
2
T − 1)1/2

K(MT)
≡ F

(P)

22 (MT), VT < V < VL,

M2
T(M

2
L − 1)1/2

N(MT)
≡ F

(P)

23 (MT), VL < V ,

(24)

F
(S)
1 (MT) =




0 ≡ F
(S)
11 (MT), V < VT,

−2M2
T(2 − M2

T)(1 − M2
L)

1/2(M2
T − 1)1/2

πK(MT)
≡ F

(S)

12 (MT),

VT < V < VL,

0 ≡ F
(S)
13 (MT), VL < V ,

(25)

F
(S)

2 (MT) =




(2 − M2
T) − 2(1 − M2

L)
1/2(1 − M2

T)
1/2

R(MT)
≡ F

(S)
21 (MT),

V < VT,

(2 − M2
T)

3 + 8(1 − M2
L)(M

2
T − 1)

K(MT)
≡ F

(S)

22 (MT),

VT < V < VL,

(2 − M2
T) + 2(M2

L − 1)1/2(M2
T − 1)1/2

N(MT)
≡ F

(S)

23 (MT),

VL < V ,

(26)

the latter four functions being defined as functions of the ‘shear’ (or ‘transverse’)
Mach number MT. Notice that ML and MT are related, by their definition, through
the following equation

ML = 1

m
MT, m ≡ VL

VT
=

[
2(1 − ν)

1 − 2ν

]1/2

> 1, (27a,b)

where ν is the Poisson ratio of the material. Also, in the above equations

R(MT) = (2 − M2
T)

2 − 4(1 − M2
L)

1/2(1 − M2
T)

1/2, (28)

is the steady-state Rayleigh function (see, e.g., [9, 1, 30]) defining the Rayleigh-
wave speed VR by R(VR/VT) = 0, and

N(MT) = (
2 − M2

T

)2 + 4
(
M2

L − 1
)1/2(

M2
T − 1

)1/2
, (29a)

K(MT) = (
2 − M2

T

)4 − 16
(
1 − M2

L

)(
1 − M2

T

)
, (29b)
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where the latter function, in particular, results as a product by the multiplication
of complex conjugates involving the Rayleigh function, at a certain step in the
solution procedure. Appendix A of the present work provides a brief analysis con-
cerning the zeroes of K(MT). These results were obtained in the spirit of the work
of Rachman and Barber [30].

In the same fashion now, one can write by superposition the total tangential
displacement at the surface. In this case, in order to avoid the presentation of
complicated results we chose to deal only with the subsonic problem. Therefore,
the results below for the 2D auxiliary problem are for the speed range V < VT.
We also avoid the less practical case of the T load and consider only the loading
(P, S). Indeed, it is difficult for one to apply and maintain a moving load having a
direction that is orthogonal to the direction of motion. Accordingly, one may write

ũq (q, ω, z = 0) = ũ(P )
q (q, ω, z = 0) + ũ(S)

q (q, ω, z = 0), (30)

where the tangential surface displacement ũ(P )
q due to a normal load P is given by

ũ(P )
q (q, ω, z = 0) = −P · sgn(cos ω)

2µ
G(P)(MT cos ω) · sgn(sgn(cos ω) · q),

(31)

and the tangential surface displacement ũ(S)
q due to a tangential load S · cos ω by

ũ(S)
q (q, ω, z = 0) = S cos ω

µ
G(S)(MT cos ω) · ln(|q|). (32)

Again, functions of MT enter the solution. These are defined as follows

G(P)(MT) = −(2 − M2
T) − 2(1 − M2

L)
1/2(1 − M2

T)
1/2

R(MT)
, V < VT, (33)

G(S)(MT) = M2
T(1 − M2

T)
1/2

πR(MT)
, V < VT. (34)

At this point, we should provide an explanation of the way that the results
from the physical plane-strain problem [1, 10, 29] have been transferred to the
first auxiliary problem. The solution to the physical problem contains the func-
tion sgn(x), and in order to preserve this behavior in the auxiliary problem we
should have a Radon transformed solution containing the function sgn(q) when
ω ∈ [0, π/2) ∪ (3π/2, 2π ](this is because the projection, Vq = V · cos ω, of
the velocity V on the q-axis has a positive direction) and the function sgn(−q)

when ω ∈ (π/2, 3π/2) (because now the projection has a negative direction).
In a compact form, the Radon transformed solution (i.e., the solution to the first
auxiliary problem) that corresponds to the behavior sgn(x) of the physical plane-
strain solution is written as sgn(sgn(cos ω) · q) (cf. Equations (21), (22) and (31)).
In addition, Figures 5(a) and 5(b) depict the first auxiliary problem and the behavior
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(a) (b)

Figure 5. Schematics for the first auxiliary problem and behavior of the function
sgn(sgn(cos ω) · q) in the cases ω = 0 (a) and ω = π (b).

of the function sgn(sgn(cos ω) · q) for the special cases ω = 0 and ω = π , respec-
tively. On the contrary, no special care should be exercised about the ‘transfer’
of ln |q| since this is an even function. Finally, one should take into account the
possible influence of the rotation of the coordinate system upon the direction of the
displacements. For instance, the load S in the solution u(S)

z of the physical problem
should be taken as S cos ω · sgn(cos ω), instead of the projection Sq ≡ S cos ω, in
the auxiliary problem.

5. Solution of the Second Auxiliary Problem

It seems that the solution to the second auxiliary problem, i.e., the surface displace-
ment in the half-plane z � 0 due to a moving anti-plane shear load, does not exist in
the literature. This solution was obtained in the course of the present investigation
and is briefly presented in Appendix B. The integral-transform procedure of Brock
and Georgiadis [29] was followed.

In the anti-plane shear case, only two speed ranges exist (i.e., the subsonic range
|V cos ω| < VT and the supersonic |V cos ω| > VT range of the load motion w.r.t.
the velocity VT). In the entire regime, the solution is given in a compact form as

ũ(S)
s (q, ω, z = 0) = S · sin ω

µ

[
Q1

(
MT cos ω

)
ln(|q|)

+Q2(MT cos ω)H(−sgn(cos ω) · q)], (35)

where H() is the Heaviside step function, and

Q1(MT) =




1

π(1 − M2
T)

1/2
≡ Q11(MT), V < VT,

0 ≡ Q12(MT), V > VT,

(36)

Q2(MT) =



0 ≡ Q21(MT), V < VT,

− 1

(M2
T − 1)1/2

≡ Q22(MT), V > VT,
(37)
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Notice in (35) and for the supersonic case that the argument q of the step function is
multiplied by sgn(cos ω) in order for the surface disturbances to be always behind
the source and not ahead, as the velocity component Vq changes sign in the course
of the Radon-transform inversion. Moreover, in utilizing the physical solution in
the transformed plane, we take into account that the direction of the displacement
ũs does not depend upon the direction of the motion of the load but does depend
upon the direction of the projection of the shear load Ss ≡ −S · sin ω.

It is noticed finally that in the case of only a vertical load P acting upon the half-
space surface (in the original 3D problem), the solution to the second auxiliary
problem is ũs(q, ω, z = 0) ≡ 0 since σ̃zs(q, ω, z = 0) = 0 is to be taken as a
boundary condition.

6. Inversion Procedure and Results for the Actual Problem

The 3D solution follows from the transformed solution in two steps. First, the
inversion of the coordinate transformation in (17) is performed providing the set
(ũz, ũx, ũy) in terms of the rotated Radon-transformed displacements (ũz, ũq , ũs),
i.e., 

 ũz

ũx

ũy


 =


 1 0 0

0 cos ω − sin ω

0 sin ω cos ω





 ũz

ũq

ũs


 . (38)

Then, the Radon-transform inversion according to (10) gives the set (uz, ux, uy) in
the physical plane. Finally, from the latter solution, one can calculate the displace-
ments in a system of cylindrical polar coordinates (r, ϕ, z) by using the coordinate
transformation (see Figure 6)

Figure 6. System of cylindrical polar coordinates (r, ϕ, z) and corresponding displacement
components.
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
 uz

ur

uϕ


 =


 1 0 0

0 cos ϕ sin ϕ

0 − sin ϕ cos ϕ





 uz

ux

uy


 , (39)

and also evaluate the stresses through (1b).
By invoking superposition and in order to avoid presenting complicated re-

sults, we consider separately the displacements due to the vertical load P and the
displacements due to the tangential load S.

6.1. VERTICAL DISPLACEMENT u(P)
z DUE TO THE VERTICAL LOAD P

The rotation of the original coordinate system (x, y, z) does not affect the trans-
formed component ũz, as is obvious from (17a), and therefore the second auxiliary
problem does not play a role here. Accordingly, operating with the inverse Radon
transform (equation (10)) on (21) and using the following relations from the theory
of generalized functions [17]

∂sgn(sgn(cos ω) · q)
∂ q

= 2sgn(cos ω) · δ(q), (40)

∂ ln(|q|)
∂q

= PF
(

1

q

)
, (41)

we obtain

u(P)
z (r, ϕ, z = 0) = − P

4π2µ

{ ∫ 2π

0

[
F

(P)
1 (MT cos ω)

×
(∫ +∞

−∞
PF

(
1

q

)
· PF

(
1

q − r cos(ω − ϕ)

)
dq

)]
dω

−
∫ 2π

0

[
sgn(cos ω) · F (P)

2 (MT cos ω)

×
( ∫ +∞

−∞
PF

(
1

q − r cos(ω − ϕ)

)
· δ(q) dq

)]
dω

}
.

(42)

An important point to notice here is that any rigid-body displacement terms, which
could be added in the RHS of (21), have been eliminated by differentiation in
the process of the Radon-transform inversion. Further, the evaluation of the inner
integrals is accomplished by utilizing results from Lauwerier [18], which concern
the Hilbert transform of generalized functions, i.e.,∫ +∞

−∞
PF

(
1

q

)
· PF

(
1

q − r cos(ω − ϕ)

)
dq = π2δ

(
r cos(ω − ϕ)

)
, (43)∫ +∞

−∞
PF

(
1

q − r cos(ω − ϕ)

)
· δ(q) dq = −PF

(
1

r cos(ω − ϕ)

)
. (44)
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With the above results in hand, equation (42) becomes

u(P)
z (r, ϕ, z = 0)

= − P

4µ

{∫ 2π

0

[
F

(P)

1 (MT cos ω) · δ(r cos(ω − ϕ))
]

dω

+
∫ 2π

0

[
sgn(cos ω) · F (P)

2 (MT cos ω) · PF
(

1

π2r cos(ω − ϕ)

)]
dω

}
. (45)

Now, two properties of the Dirac delta distribution will be employed, namely
the sifting property and the property that

δ[g(x)] =
N∑

j=1

δ(x − aj )

|g′(aj )| ,

where g(x) is a monotonic function of x which vanishes at the points x = aj ,
with (j = 1, 2, . . . , N), and g′(aj ) are the derivatives at the points x = aj . These
two properties lead to the value (2/r)F (P )

1 (MT sin ϕ) for the first integral in (45).
Also, the second integral is transformed through the monotonic change of variable
ζ = sin ω. Equation (45) therefore becomes

u(P)
z (r, ϕ, z = 0) = − P

µr

{
1

2
F

(P)
1 (MT sin ϕ) + cos ϕ

π2

×
[ ∫ 1

0
F

(P)
2

(
MT(1 − ζ 2)1/2

)
PF

(
1

cos2 ϕ − ζ 2

)
dζ

]}
. (46)

This is a key result of the present analysis. From this result, particular results
will be obtained below for the entire speed range, i.e., for 0 < V < VR, VR <

V < VT, VT < V < VL and VL < V . The particular results depend of course
upon the forms of the functions F

(P)
1 () and F

(P)
2 () in each speed range. Finally, one

may notice in (46) that the surface vertical displacement u(P)
z is indeed symmetric

with respect to the x-axis.

6.1.1. Sub-Rayleigh Range (0 < V < VR)

Here, only the first term in the RHS of (46) contributes, since F
(P)
2 (MT(1 − ζ 2)1/2)

= 0 for all ζ ∈ [0, 1]. Thus, the final result is

u(P)
z (r, ϕ, z = 0) = − P

2µr
F

(P)

11 (MT sin ϕ), (47)

where the function F
(P)

11 () was defined in (23). One may observe from (47) that
u(P)

z exhibits symmetry w.r.t. both axes x and y.

6.1.2. Super-Rayleigh Subsonic Range (VR < V < VT)

The solution is still given by the first term in the RHS of (46). However, as the
analysis in Appendix A indicates, along the lines ϕ = ±ϕR and ϕ = π ±ϕR on the
half-space surface (with ϕR = sin−1(m

1/2
1 /MT) and 0 < ϕR < π/2), the Rayleigh
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Figure 7. Mach-like Rayleigh wave ‘sectors’. Only the trailing Rayleigh wavefronts (contin-
uous lines) are acceptable.

function vanishes (i.e., R(MT sin ϕ) = 0) and thus the normal displacement u(P)
z is

singular. In other words, solution (46), as it stands, predicts two Mach-like Rayleigh
wave ‘sectors’; one ahead of the moving source and the other behind. Nevertheless,
as Barber [12] points out only trailing waves of this type should exist. This state-
ment is supported by the radiation condition (see, e.g., [26]) and the observation
that the steady-state problem should be viewed as the long-time limit of a transient
problem, in which the point load (that moves with a super-Rayleigh velocity) is
suddenly applied to an initially quiescent half-space, and therefore, one should
expect in such a problem the existence of Rayleigh-wave disturbances behind but
not ahead of the load (see relative solutions on the transient analogue of the present
problem by Payton [31], Gakenheimer and Miklowitz [32], and Bakker et al. [33]).
The situation is presented in Figure 7 that depicts the top view of the problem.

We then write the corrected solution in this speed range by also taking into
account that: (i) the final solution should retain an r−1 dependence (this is based
on an observation by Willis [34] in general 3D problem with concentrated loads
according to which equilibrium demands that the stress field must vary as r−2 from
the point of application of the force, and therefore, that the displacement field must
vary as r−1), (ii) the expression given by the first term of (46) exhibits symmetry
w.r.t. both axes x and y, whereas the final solution should retain symmetry only
w.r.t. the x-axis, and (iii) the correction added should eliminate the Rayleigh-wave
disturbance ahead of the load. The final solution is written as

u(P)
z (r, ϕ, z = 0) = − P

2µ

[
1

r
F

(P )
11 (MT sin ϕ) + 6

r sin(ϕ − ϕR)

− 6

r sin(ϕ + ϕR)

]
, (48)
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where 6 is a yet unknown constant. Following Barber [12], this constant can be
determined with the help of the operations described below.

First, we notice from equations (23), (28) and (29b) of the main text and equa-
tion (A1) of Appendix A that the function F

(P)
11 (MT) can be written as

F
(P)

11 (MT) = (1 − M2
L)

1/2[(2 − M2
T)

2 + 4(1 − M2
L)

1/2(1 − M2
T)

1/2]
π(M2

T − m1)(M
2
T − m2)(M

2
T − m3)

, (49)

where mj , with (j = 1, 2, 3), are the nontrivial zeroes of the function K(MT)

whose expressions are given in Appendix A. Next, the following definitions are
introduced

A(MT) ≡ 4(1 − M2
L)∏3

j=1 (M2
T − mj)

, B(MT) ≡ (2 − M2
T)

2∏3
j=1 (M2

T − mj)
, (50a,b)

and the functions (A,B) are subsequently written as sums of partial fractions
through the use of the factorization forms provided in equations (A.5) and (A.6)
of Appendix A. In view of the above, F

(P)
11 (MT) in (49) takes the following form,

which can directly lead to the determination of the constant 6 through canceling
of the terms that generate the undesirable Rayleigh-wave singularities mentioned
before

F
(P)
11 (MT sin ϕ) = 1

π

3∑
j=1

Aj(1 − M2
T sin2 ϕ)1/2

(M2
T sin2 ϕ − mj)

+ 1

π

3∑
j=1

Bj(1 − M2
L sin2 ϕ)1/2

(M2
T sin2 ϕ − mj)

, (51)

where the new constants (Aj , Bj ), with (j = 1, 2, 3), are given in equations (A.9)
and (A.10) of Appendix A and solely depend upon the Poisson’s ratio of the
material. Finally, in view of (51) and the definition of ϕR, solution (48) becomes

u(P)
z (r, ϕ, z = 0) = − P

2µπr

[
3∑

j=1

Aj(1 − M2
T sin2 ϕ)1/2

(M2
T sin2 ϕ − mj)

+
3∑

j=1

Bj(1 − M2
L sin2 ϕ)1/2

(M2
T sin2 ϕ − mj)

+ 26m
1/2
1 MT cos ϕ

M2
T sin2 ϕ − m1

]
.

(52)

From the above form, it is clear now that 6 should be chosen so that the
terms corresponding to the case j = 1 to be canceled along the Rayleigh wave
singularities ahead of the load, that is for ϕ = ±ϕR. In this way, by solving the
equation

A1
(
1 − M2

T sin2 ϕR
)1/2 + B1

(
1 − m−2M2

T sin2 ϕR
)1/2

+ 26m
1/2
1 MT cos ϕR = 0, (53)
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we obtain the appropriate value of 6 as

6 = −MT(1 − m−2m1)
1/2[(2 − m1)

2 + 4(1 − m1)
1/2(1 − m−2m1)

1/2]
2m1/2

1 MT(M
2
T − m1)1/2(m1 − m2)(m1 − m3)

,

(54)

and, further, from (52) the final solution in the range VR < V < VT

u(P)
z (r, ϕ, z = 0)

= − P

2µπr

[
πF

(P)

11 (MT sin ϕ)

− MT cos ϕ · (1 − m−2m1)
1/2[(2 − m1)

2 + 4(1 − m1)
1/2(1 − m−2m1)

1/2]
(M2

T sin2 ϕ − m1)(M
2
T − m1)

1/2(m1 − m2)(m1 − m3)

]
(55)

6.1.3. Transonic Range (VT < V < VL)

In this case, both terms in the RHS of (46) contribute. Also, the functions F
(P)

1

(MT sin ϕ) and F
(P)

2 (MT sin ϕ) because of (23), (24), (49), (50a,b) and (A.1) are
written as

πF
(P)

1 (MT sin ϕ) = A(MT sin ϕ)
(
1 − M2

T sin2 ϕ
)1/2

H
(
VT − V |sin ϕ|) +

+B(MT sin ϕ)
(
1 − M2

L sin2 ϕ
)1/2

, (56a)

F
(P)

2

(
MT(1 − ζ 2)1/2) = A

(
MT(1 − ζ 2)1/2)(M2

T − M2
Tζ

2 − 1
)1/2

×H
(
V (1 − ζ 2)1/2 − VT

)
. (56b)

Substituting then (56) in (46) provides

u(P)
z (r, ϕ, z = 0)

= − P

2µπr

[
A(MT sin ϕ) · (

1 − M2
T sin2 ϕ

)1/2
H

(
VT − V |sin ϕ|)

+B(MT sin ϕ)(1 − M2
L sin2 ϕ)1/2] − P cos ϕ

µπ2r

×
∫ [1−(1/M2

T)]1/2

0
A

(
MT(1 − ζ 2)1/2

)(
M2

T − M2
Tζ

2 − 1
)1/2

× PF
(

1

cos2 ϕ − ζ 2

)
dζ. (57)

Here, an analysis of the integral in the RHS of (57) should be provided. This
reveals, in fact, that the integral is a well-defined Cauchy principal-value integral.
Considering (50a), the following points are noted about the integral:

(i) the analysis in Appendix A shows that the zero of the term M2
T −m1 − M2

Tζ
2

lies outside the integration interval,
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(ii) the terms M2
T −mj −M2

Tζ
2, with (j = 2, 3), do not have zeros in this velocity

regime because it is valid that m3 > m2 > M2
T – see Appendix A,

(iii) along those angles ϕ defined by cos2 ϕ = 0, the integral diverges but thanks
to its coefficient cos ϕ the integral term in (57) eventually vanishes, and

(iv) along those angles ϕ defined by cos2 ϕ = [1 − (1/M2
T)] (the angles corre-

spond to the shear Mach wavefronts), the integrand exhibits an integrable be-
havior varying as ([1 − (1/M2

T)]1/2 − ζ )−1/2. Therefore, the integrand in (57)
exhibits only one pole at ζ = |cos ϕ|, and the associated integral is a Cauchy
principal-value integral contributing no singularity in the displacement.

The only singularity in (57) is the Rayleigh-type singularity stemming from the
first term of this expression. This term also indicates the existence of the perti-
nent shear Mach wavefronts since it contains the Heaviside step function H(VT −
V |sin ϕ|). One can work now as in the previous super-Rayleigh/subsonic case to
eliminate the singularity ahead of the load and, finally, the following expression is
found for the surface vertical displacement u(P)

z due to the vertical load P in the
transonic range

u(P)
z (r, ϕ, z = 0)

= − P

2µπr

[
A(MT sin ϕ)

(
1 − M2

T sin2 ϕ
)1/2

H
(
VT − V |sin ϕ|)

+B(MT sin ϕ)
(
1 − M2

L sin2 ϕ
)1/2

− MT cos ϕ(1 − m−2m1)
1/2[(2 − m1)

2 + 4(1 − m1)
1/2(1 − m−2m1)

1/2]
(M2

T sin2 ϕ − m1)(M
2
T − m1)1/2(m1 − m2)(m1 − m3)

]

− P · cos ϕ

µπ2r

∫ [1−(1/M2
T)]1/2

0
A

(
MT(1 − ζ 2)1/2

)(
M2

T − M2
Tζ

2 − 1
)1/2

× PF
(

1

cos2 ϕ − ζ 2

)
dζ. (58)

The Cauchy principal-value integral in (58) as well as all integrals in the other
results below was evaluated by using the numerical algorithms of the program
MATHEMATICATM – version 3.0. Numerical results in the form of graphs are
presented in Section 9.

6.1.4. Supersonic Range (VL < V )

Working again on the basic result of equation (46), we get the expression

u(P)
z (r, ϕ, z = 0)

= − P

2µπr

[
A(MT sin ϕ)

(
1 − M2

T sin2 ϕ
)1/2

H
(
VT − V |sin ϕ|)

+B(MT sin ϕ)
(
1 − M2

L sin2 ϕ
)1/2

H
(
VL − V |sin ϕ|)]
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− P · cos ϕ

µπ2r

∫ [1−(1/M2
L)]1/2

0

[
A

(
MT(1 − ζ 2)1/2)(M2

T − M2
Tζ

2 − 1
)1/2

+B
(
MT(1 − ζ 2)1/2

)(
M2

L − M2
Lζ

2 − 1
)1/2]

PF
(

1

cos2 ϕ − ζ 2

)
dζ

− P · cos ϕ

µπ2r

∫ [1−(1/M2
T)]1/2

[1−(1/M2
L)]1/2

A
(
MT(1 − ζ 2)1/2

)(
M2

T − M2
Tζ

2 − 1
)1/2

× PF
(

1

cos2 ϕ − ζ 2

)
dζ. (59)

The first term in the RHS of (59) is particularly simple and instructive since it
clearly exhibits the appearance of the longitudinal and shear Mach wavefronts.
These wavefronts stem from the two Heaviside step functions. However, the inte-
grals require a careful analysis.

Regarding the first integral, one may notice the following:
(i) Relation (27b) and Appendix A indicate that m1 < m2 and, therefore, the

term M2
T − m1 − M2

Tζ
2 has no zeros inside the integration interval.

(ii) The analysis in Appendix A suggests that the zeros m2 and m3 of the function
K(MT) are real numbers when the Poisson ratio ν satisfies the inequalities
0 < ν � ν0, where ν0 = 0.2630820648 . . . . In addition, in the supersonic
regime, the inequalities m2 < M2

T and/or m3 < M2
T may be satisfied and,

accordingly, the zeros of the terms M2
T − mj − M2

Tζ
2, with (j = 2, 3), may

lie within the integration interval. However, it can be shown that these points
correspond to removable singularities.

(iii) Along the lines cos2 ϕ = [1 − (1/M2
L)], which correspond to the longitudi-

nal Mach wavefronts, the integrand remains integrable since it behaves like
([1 − (1/M2

L)]1/2 − ζ )−1/2 at the upper integration limit.
Regarding now the second integral, one may notice that: (i) The zeros of the

term M2
T −m1 −M2

Tζ
2 lie outside the integration interval, since (A.3) indicates that

m1 < 1. (ii) The zeros of the terms M2
T − mj − M2

Tζ
2, with (j = 2, 3), lie outside

the integration interval. (iii) Along the shear Mach wavefront (upper integration
limit), the integrand behaves like an inverse square root and is, therefore, integrable.
Along the longitudinal Mach wavefront, the integrand is smooth. Finally, one may
observe, that in the two integrands of (59) only one pole appears at the point ζ =
|cos ϕ|. Therefore, the integrals in (59) can be evaluated in the Cauchy principal-
value sense without any difficulty.

In view of the above observations, we may conclude that there are no other
singularities for the surface vertical displacement u(P)

z (r, ϕ, z = 0) except for the
Rayleigh-type singularity exhibited by the first (non-integral) term of (59). This
singularity is due to the terms A(MT sin ϕ) and B(MT sin ϕ). Following the same
procedure as in the previous cases of a super-Rayleigh/subsonic speed and a tran-
sonic speed of the moving load, the complete solution for the present supersonic
case is obtained as
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u(P)
z (r, ϕ, z = 0)

= − P

2µπr

[
A(MT sin ϕ)

(
1 − M2

T sin2 ϕ
)1/2

H
(
VT − V |sin ϕ|)

+B(MT sin ϕ)
(
1 − M2

L sin2 ϕ
)1/2

H(VL − V |sin ϕ|)
− MT cos ϕ · (1 − m−2m1)

1/2[(2 − m1)
2 + 4(1 − m1)

1/2(1 − m−2m1)
1/2]

(M2
T sin2 ϕ − m1)(M

2
T − m1)1/2(m1 − m2)(m1 − m3)

]

− P · cos ϕ

µπ2r

∫ [1−(1/M2
L)]1/2

0
B

(
MT(1 − ζ 2)1/2

)(
M2

L − M2
Lζ

2 − 1
)1/2

× PF
(

1

cos2 ϕ − ζ 2

)
dζ − P · cos ϕ

µπ2r

∫ [1−(1/M2
L)]1/2

0
A

(
MT(1 − ζ 2)1/2

)
× (

M2
T − M2

Tζ
2 − 1

)1/2
PF

(
1

cos2 ϕ − ζ 2

)
dζ − P · cos ϕ

µπ2r

×
∫ [1−(1/M2

T)]1/2

[1−(1/M2
L)]1/2

A
(
MT(1 − ζ 2)1/2

)(
M2

T − M2
Tζ

2 − 1
)1/2

PF
(

1

cos2 ϕ − ζ 2

)
dζ.

(60)

This concludes the presentation of results for the surface vertical displace-
ment u(P)

z due to the vertical load P . Our results agree with respective results by
Lansing [6] and Barber [12] in the entire speed range, and with the sub-Rayleigh
results of Eason [11] (notice that Eason restricted himself in a sub-Rayleigh analy-
sis of the problem only). Finally, as noted in the Introduction, the integrals in (58)
and (60) were evaluated in closed analytical forms by Barber [12]. We chose, how-
ever, to give the results in integral forms that are amenable to numerical evaluation
by MATHEMATICATM because in all other cases considered here closed analytical
forms are impossible to be obtained.

6.2. VERTICAL DISPLACEMENT u(S)
z DUE TO THE TANGENTIAL LOAD S

Operating with the inverse Radon transform on (20) and (22a) (i.e., on the solution
of the first auxiliary problem involving the tangential load that is in the direction of
motion) and proceeding in an similar manner as in the previous case of the vertical
load, we obtain

u(S)
z (r, ϕ, z = 0) = − S

2µr
F

(S)
1 (MT sin ϕ) · |sin ϕ| − S cos ϕ

µπ2r

×
∫ 1

0
F

(S)
2

(
MT(1 − ζ 2)1/2

)
(1 − ζ 2)1/2 PF

(
1

cos2 ϕ − ζ 2

)
dζ.

(61)
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Again, from this basic result, particular results will be obtained below for the entire
speed regime, i.e., for 0 < V < VR, VR < V < VT, VT < V < VL and VL < V .
These results will depend of course upon the particular forms of the functions
F

(S)
1 (·) and F

(S)
2 (·) in each speed range. Finally, equation (62) clearly exhibits the

required symmetry of u(S)
z w.r.t. the x-axis.

6.2.1. Sub-Rayleigh Range (0 < V < VR)

In this range, only the integral in (62) contributes since F
(S)
11 (MT sin ϕ) = 0 for all

angles ϕ. Thus, the result is found to be

u(S)
z = −S · cos ϕ

µπ2r

∫ 1

0

[
C

(
MT(1 − ζ 2)1/2) + D

(
MT(1 − ζ 2)1/2)

× (
1 − M2

T + M2
Tζ

2
)1/2(

1 − M2
L + M2

Lζ
2
)1/2](

1 − ζ 2
)1/2

× PF
(

1

cos2 ϕ − ζ 2

)
dζ, (62)

where

C(MT) = (8m−2 − 4) + (6 − 8m−2)M2
T − M4

T∏3
j=1 (M2

T − mj)
,

D(MT) = 2(2 − M2
T)∏3

j=1 (M2
T − mj)

.

(63a,b)

This result is in agreement with the respective result in the study by Eason [11].

6.2.2. Super-Rayleigh Subsonic Range (VR < V < VT)

The displacement u(S)
z is still given by (62). However, in this case there are two

poles at the points ζ = [1 − (m1/M
2
T)]1/2 and ζ = |cos ϕ|. No additional poles

arise since, in view of (A.4), the terms M2
T − mj − M2

Tζ
2, with (j = 2, 3), exhibit

no zeros. One may obtain

u(S)
z = −S · cos ϕ

µπ2r

∫ 1

0

[
C∗(MT(1 − ζ 2)1/2)

+D∗(MT(1 − ζ 2)1/2)(1 − M2
T + M2

Tζ
2)1/2(

1 − M2
L + M2

Lζ
2)1/2]

× (
1 − ζ 2)1/2

PF
(

1

M2
T − m1 − M2

Tζ
2

)
PF

(
1

cos2 ϕ − ζ 2

)
dζ, (64)

where

C∗(MT) = C(MT)
(
M2

T − m1
)
, D∗(MT) = D(MT)

(
M2

T − m1
)
. (65a,b)

As long as the two poles in the integrand of (64) do not coincide, no difficulty
arises for the evaluation of the integral even by the use of MATHEMATICATM.
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The two poles coincide when cos2 ϕ = [1 − (m1/M
2
T)], which are directions cor-

responding to the Rayleigh Mach wavefronts. A double pole then arises and the
solution takes the form

u(S)
z = −S cos ϕ

µπ2r

∫ 1

0

[
C∗(MT(1 − ζ 2)1/2

)
+D∗(MT(1 − ζ 2)1/2

)(
1 − M2

T + M2
Tζ

2
)1/2(

1 − M2
L + M2

Lζ
2
)1/2]

× (1 − ζ 2)1/2 1

M2
T

· PF
(

1

([1 − (m1/M
2
T)] − ζ 2)2

)
dζ, (66)

where PF(·) denotes now the finite-part (or second-order principal-part) pseudo-
function or distribution (see, e.g., [17, 19]). In other words, the integral in (66)
should be interpreted as a Hadamard finite-part integral [19]. This means that

〈
PF(1/x2), φ

〉 = lim
ε→0

∫
|x|�ε

φ(x) − φ(0)

x2
dx,

where 〈·, ·〉 denotes the inner product of distributions, ε is a real and positive num-
ber, and φ is a test function. Equivalently, the second-order principal-part pseudo-
function is the negative of the derivative of the principal-value pseudo-function,
i.e., PF(1/x2) = −PF′(1/x). In view of the above, the vertical displacement u(S)

z

given by (66) remains bounded even along the Rayleigh wavefronts.

6.2.3. Transonic Range (VT < V < VL)

Working as in the latter case, the combination of equations (25), (26), (61), (63)
and (65) provides the result

u(S)
z (r, ϕ, z = 0)

= S|sin ϕ|
2µπr

D(MT sin ϕ)
(
1 − M2

L sin2 ϕ
)1/2(

M2
T sin2 ϕ − 1

)1/2

×H

(
|sin ϕ| − 1

MT

)
− S · cos ϕ

µπ2r

[∫ 1

0
C∗(MT(1 − ζ 2)1/2

) · (1 − ζ 2
)1/2

× PF
(

1

M2
T − m1 − M2

Tζ
2

)
· PF

(
1

cos2 ϕ − ζ 2

)
dζ

+
∫ 1

[1−(1/M2
T)]1/2

D∗(MT(1 − ζ 2)1/2
)(

1 − M2
T + M2

Tζ
2
)1/2

× (
1 − M2

L + M2
Lζ

2
)1/2

× (
1 − ζ 2

)1/2
PF

(
1

M2
T − m1 − M2

Tζ
2

)
PF

(
1

cos2 ϕ − ζ 2

)
dζ

]
. (67)

The first integrand in (67) exhibits poles at the points ζ = [1 − (m1/M
2
T)]1/2 and

ζ = |cos ϕ|, whereas the second integrand exhibits a pole at ζ = [1 − (m1/M
2
T)]1/2
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in any case and at ζ = |cos ϕ| only if cos2 ϕ > [1 − (1/M2
T)]. Both integrals

are evaluated as Cauchy principal-value integrals and are amenable to a direct
numerical treatment.

6.2.4. Supersonic Range (VL < V )

Here, equations (25), (26), (61) and (63) yield

u(S)
z (r, ϕ, z = 0)

= S|sin ϕ|
2µπr

· D(MT sin ϕ)
(
1 − M2

L sin2 ϕ
)1/2(

M2
T sin2 ϕ − 1

)1/2

×
[
H

(
|sin ϕ| − 1

MT

)
− H

(
|sin ϕ| − 1

ML

)]

− S cos ϕ

µπ2r

[ ∫ 1

0
C

(
MT(1 − ζ 2)1/2

)(
1 − ζ 2

)1/2 PF
(

1

cos2 ϕ − ζ 2

)
dζ

−
∫ [1−(1/M2

L)]1/2

0
D

(
MT(1 − ζ 2)1/2

)(
M2

T − M2
Tζ

2 − 1
)1/2

× (
M2

L − M2
Lζ

2 − 1
)1/2(

1 − ζ 2)1/2
PF

(
1

cos2 ϕ − ζ 2

)
dζ

]

+
∫ 1

[1−(1/M2
T)]1/2

D
(
MT(1 − ζ 2)1/2

)(
1 − M2

T + M2
Tζ

2
)1/2

× (
1 − M2

L + M2
Lζ

2)1/2
(1 − ζ 2)1/2 PF

(
1

cos2 ϕ − ζ 2

)
dζ

]
. (68)

In general, the numerical evaluation of (68) does not pose particular difficulties,
except in the case of Poisson’s ratios in the range ν � ν0. This is due to the fact
that the zeros of the function K(MT) are real and, therefore, the integrands along
the integration intervals [0, 1] and [0, [1 − (1/M2

L)]1/2] may exhibit more than two
distinct poles. Since the program MATHEMATICATM cannot numerically evaluate
an integral with an integrand containing more than two pole singularities, we re-
duce these integrals to forms that contain at most two pole singularities. Indeed, this
is accomplished by writing the terms C(MT(1 − ζ 2)1/2) and D(MT(1 − ζ 2)1/2) as
partial fractions according to equations (A.7), (A.8), (A.11) and (A.12) of Appen-
dix A. In this way, the first two integrals in (68), say I1 and I2, are expressed by the
following forms that now permit numerical evaluation by MATHEMATICATM

I1 =
3∑

j=1

Cj

∫ 1

0
PF

(
1

M2
T − mj − M2

Tζ
2

)(
1 − ζ 2)1/2

× PF
(

1

cos2 ϕ − ζ 2

)
dζ, (69)
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I2 =
3∑

j=1

Dj

∫ [1−(1/M2
L)]1/2

0
PF

(
1

M2
T − mj − M2

Tζ
2

)(
M2

T − M2
Tζ

2 − 1
)1/2

× (
M2

L − M2
Lζ

2 − 1
)1/2(

1 − ζ 2)1/2
PF

(
1

cos2 ϕ − ζ 2

)
dζ, (70)

where the constants (Cj,Dj ) are given in Appendix A.

6.3. VERTICAL DISPLACEMENT u(T )
z DUE TO THE TANGENTIAL LOAD T

In this case, we operate with (10) on (20) and (22b) and obtain the result

u(T )
z (r, ϕ, z = 0)

= − T

4µ

{∫ 2π

0

[
sin ω · sgn(sin ω) · F (S)

1 (MT cos ω)δ(r cos(ω − ϕ))
]

dω

+
∫ 2π

0

[
sgn(cos ω) · F (S)

2 (MT cos ω) PF
(

1

π2r · cos(ω − ϕ)

)]
dω

}
. (71)

Further, using properties of the Dirac delta distribution and performing the monot-
onic change of variable ζ = sin ω, we get

u(T )
z (r, ϕ, z = 0) = − T

2µr
F

(S)
1 (MT sin ϕ) · |cos ϕ|

− T · cos ϕ

µπ2r

∫ 1

0
F

(S)

2

(
MT(1 − ζ 2)1/2

) · ζ

× PF
(

1

cos2 ϕ − ζ 2

)
dζ. (72)

From the above general result now, particular results are derived for the sub-
Rayleigh and super-Rayleigh subsonic range. No details are given, however, since
(72) strongly resembles (61), which was analyzed in detail before.

6.3.1. Sub-Rayleigh Range (0 < V < VR)

In this range, only the integral in (72) contributes since F
(S)

11 (MT sin ϕ) = 0 for all
angles ϕ. Therefore, we have

u(T )
z = −T · cos ϕ

µπ2r

∫ 1

0

[
C

(
MT(1 − ζ 2)1/2

)
+D

(
MT(1 − ζ 2)1/2)(1 − M2

T + M2
Tζ

2)1/2(
1 − M2

L + M2
Lζ

2)1/2]
× ζ · PF

(
1

cos2 ϕ − ζ 2

)
dζ, (73)

where C(MT) and D(MT) are given by equations (63).
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6.3.2. Super-Rayleigh Subsonic Range (VR < V < VT)

u(T )
z = −T · cos ϕ

µπ2r

∫ 1

0

[
C∗(MT(1 − ζ 2)1/2

)
+D∗(MT(1 − ζ 2)1/2)(1 − M2

T + M2
Tζ

2)1/2(
1 − M2

L + M2
Lζ

2)1/2]
× ζ · PF

(
1

M2
T − m1 − M2

Tζ
2

)
PF

(
1

cos2 ϕ − ζ 2

)
dζ, (74)

where C∗(MT) and D∗(MT) are given by equations (65).

7. Additional Results: Tangential Displacements

In general, the tangential displacements (ux, uy) can be found by operating with
the inverse Radon transform on the transformed displacements (ũx, ũy). The latter
expressions result, of course, from (38) and the expressions for (ũq, ũs). Then,
the components (ur, uϕ) in the cylindrical polar coordinate system may readily be
obtained through the coordinate transformation (39).

As before, the displacements will be obtained separately for the cases of ver-
tical and tangential loading. Also, in accordance with the results provided for
ũq(q, ω, z = 0) in Section 4, we will avoid below the less practical case of the
T load and consider only the loading (P, S).

7.1. TANGENTIAL DISPLACEMENTS DUE TO THE VERTICAL LOAD P

In this case, the solution to the first auxiliary problem is given by (31) and (33),
whereas the solution to the second auxiliary problem is ũs(q, ω, z = 0) = 0 since
the boundary condition associated with (14) is σ̃zs(q, ω, z = 0) = 0. Accordingly,
the following Radon transformed solutions are obtained

ũ(P )
x (q, ω, z = 0) = −P · sgn(cos ω) · cos ω

2µ
G(P)(MT cos ω)

× sgn
(
sgn(cos ω) · q)

, (75)

ũ(P )
y (q, ω, z = 0) = −P · sgn(cos ω) · sin ω

2µ
G(P)(MT cos ω)

× sgn
(
sgn(cos ω) · q)

, (76)

and further from (10), (40), (44) and by the monotonic change of variable ζ =
sin ω, the tangential (horizontal) displacements are obtained as

u(P)
x (r, ϕ, z = 0) = −P cos ϕ

µπ2r

∫ 1

0
G(P)

(
MT(1 − ζ 2)1/2

)(
1 − ζ 2

)1/2

× PF
(

1

cos2 ϕ − ζ 2

)
dζ, (77)
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u(P)
y (r, ϕ, z = 0) = P sin ϕ

µπ2r

∫ 1

0
G(P)

(
MT(1 − ζ 2)1/2) ζ 2

(1 − ζ 2)1/2

× PF
(

1

cos2 ϕ − ζ 2

)
dζ, (78)

where

G(P)
(
MT(1 − ζ 2)1/2) = −C

(
MT(1 − ζ 2)1/2) − D

(
MT(1 − ζ 2)1/2)

× (
1 − M2

T + M2
Tζ

2)1/2(
1 − M2

L + M2
Lζ

2)1/2
. (79)

One may observe now that the expression for u(P)
x coincides with that for u(S)

z ,
the latter being given by (62). This is not surprising in view of the dynamic version
of the Betti–Rayleigh reciprocal theorem. Notice also that an opposite sign in the
two expressions is due to the different direction of the loads w.r.t. the corresponding
displacements. In view of this, the previous analysis concerning u(S)

z in the subsonic
range is carried over the case of u(P)

x too. An inspection also on (77) and (78) re-
veals that both u(P)

x and u(P)
y do not exhibit Rayleigh–Mach wavefronts. Equations

(77) and (78) hold in the entire subsonic velocity range.
Finally, from (39), (77) and (78), the displacement components in a system of

cylindrical polar coordinates (r, ϕ, z) (see Figure 6) are found to be

u(P)
r (r, ϕ, z = 0) = − P

µπ2r

∫ 1

0
G(P)

(
MT(1 − ζ 2)1/2

) 1

(1 − ζ 2)1/2
dζ, (80)

u(P)
ϕ (r, ϕ, z = 0) = P cos ϕ · sin ϕ

µπ2r

∫ 1

0
G(P)

(
MT(1 − ζ 2)1/2

)
× 1

(1 − ζ 2)1/2
· PF

(
1

cos2 ϕ − ζ 2

)
dζ. (81)

Equation (80) shows that the radial displacement at the surface u(P)
r has no angular

dependence. Also, the other component u(P)
ϕ is anti-symmetric w.r.t. the axes x

and y, and vanishes along lines on the surface defined by the angles ϕ = 0, π/2, π,

3π/2.

7.2. TANGENTIAL DISPLACEMENTS DUE TO THE TANGENTIAL LOAD S

In the present case, the solution to the second auxiliary problem does play a role.
Indeed, solutions (32) and (35) for ũ(S)

q and ũ(S)
s , respectively, provide through (38)

the Radon transformed displacements

ũ(S)
x (q, ω, z = 0) = −S

µ

[
Q1(MT cos ω) sin2 ω − G(S)(MT cos ω) · cos2 ω

]
× ln |q|, (82)

ũ(S)
y (q, ω, z = 0) = S cos ω · sin ω

µ

[
Q1(MT cos ω) + G(S)(MT cos ω)

]
ln |q|,

(83)
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where the functions of the Mach number MT, G(S) (MT) and Q1(MT) are given
in (34) and (36), respectively. Then, the latter equations along with (10), (41) and
(44) lead to the tangential displacements in the subsonic range

u(S)
x (r, ϕ, z = 0) = S

2µr

[
Q11(MT sin ϕ) cos2 ϕ − G(S)(MT sin ϕ) sin2 ϕ

]
,

(84)

u(S)
y (r, ϕ, z = 0) = S · cos ϕ · sin ϕ

2µr

[
Q11(MT sin ϕ) + G(S)(MT sin ϕ)

]
.

(85)

In addition, applying (39) to (84) and (85) yields

u(S)
r (r, ϕ, z = 0) = S cos ϕ

2µr
Q11(MT sin ϕ), (86)

u(S)
ϕ (r, ϕ, z = 0) = S sin ϕ

2µr
G(S)(MT sin ϕ). (87)

In what follows, the sub-Rayleigh and the super-Rayleigh/subsonic cases will
be treated separately.

7.2.1. Sub-Rayleigh Range (0 < V < VR)

Here, the displacements can be calculated from (84)–(87). It is of notice that
u(S)

x and u(S)
y are symmetric and anti-symmetric, respectively, w.r.t. both axes x

and y.

7.2.2. Super-Rayleigh Subsonic Range (VR < V < VT)

In this case, solutions (84) and (85) exhibit singular behavior along the Rayleigh
lines, where R(MT sin ϕ) = 0. The solutions, as they stand, predict two Rayleigh
‘sectors’; one ahead of the load S and the other behind. Since only trailing Rayleigh
waves are acceptable by the pertinent radiation condition, the ‘sector’ ahead of the
load should be eliminated. Following the same reasoning as in the respective case
of u(P)

z (see Subsection 6.1), we write the corrected solutions as

u(S)
x (r, ϕ, z = 0) = S

2µ

[
1

r
Q11(MT sin ϕ) cos2 ϕ − G(S)(MT sin ϕ) · sin2 ϕ

+ ;

r sin(ϕ − ϕR)
− ;

r sin(ϕ + ϕR)

]
, (88)

u(S)
y (r, ϕ, z = 0) = S cos ϕ · sin ϕ

2µ

[
1

r
Q11(MT sin ϕ) + G(S)(MT sin ϕ)

+ <

r sin(ϕ − ϕR)
+ <

r sin(ϕ + ϕR)

]
, (89)



116 H.G. GEORGIADIS AND G. LYKOTRAFITIS

where the constants ; and < are determined by imposing the elimination of the
leading Rayleigh-wave ‘sectors’. The final expressions read

u(S)
x (r, ϕ, z = 0)

= S

2µr

[
Q11(MT sin ϕ) cos2 ϕ − G(S)(MT sin ϕ) sin2 ϕ

+ cos ϕ · m1(1 − m1)
1/2[(2 − m1)

2 + 4(1 − m1)
1/2(1 − m−2m1)

1/2]
πMT(M

2
T sin2 ϕ − m1)(M

2
T − m1)

1/2(m1 − m2)(m1 − m3)

]
, (90)

u(S)
y (r, ϕ, z = 0)

= S cos ϕ · sin ϕ

2µr

[
Q11(MT sin ϕ) + G(S)(MT sin ϕ)

− (M2
T − m1)

1/2(1 − m1)
1/2[(2 − m1)

2 + 4(1 − m1)
1/2(1 − m−2m1)

1/2]
π cos ϕ · MT(M

2
T sin2 ϕ − m1)(m1 − m2)(m1 − m3)

]
(91)

Finally, the transformation (39) when applied to (86) and (87) provides the
displacement components

u(S)
r (r, ϕ, z = 0)

= S

2µr

[
Q11(MT sin ϕ) cos ϕ

− (1 − m1)
1/2[(2 − m1)

2 + 4(1 − m1)
1/2(1 − m−2m1)

1/2]
πMT(M

2
T − m1)1/2(m1 − m2)(m1 − m3)

]
, (92)

u(S)
ϕ (r, ϕ, z = 0)

= S sin ϕ

2µr

[
G(S)(MT sin ϕ)

− cos ϕMT(1 − m1)
1/2[(2 − m1)

2 + 4(1 − m1)
1/2(1 − m−2m1)

1/2]
π(M2

T − m1)1/2(m1 − m2)(m1 − m3)(M
2
T sin2 ϕ − m1)

]
,

(93)

where one may notice that Rayleigh singular lines do not appear in u(S)
r and that

u(S)
ϕ is anti-symmetric w.r.t. the x-axis.

8. The Limit Cases of the Boussinesq and Cerruti Problems

As a check of our method and results, we obtain now the solutions to the problems
of Boussinesq and Cerruti as limit cases of our solutions. These classical elastosta-
tic problems involve a 3D half-space under the action of a stationary concentrated
load on the surface (see for solutions in, e.g., [35, 26, 36, 37]). The load is either
vertical (Boussinesq problem) with magnitude P or tangential (Cerruti problem)
with magnitude S.
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Here, the above solutions are obtained by allowing V = 0, i.e., by considering
stationary loads.

Boussinesq’s Problem

Equations (47) and (49) provide

u(P)
z (r, ϕ, z = 0)

= − P

2µπr

(
1 − M2

L sin2 ϕ
)1/2

× [(2 − M2
T sin2 ϕ)2 + 4(1 − M2

L sin2 ϕ)1/2(1 − M2
T sin2 ϕ)1/2]

(M2
T sin2 ϕ − m1)(M

2
T sin2 ϕ − m2)(M

2
T sin2 ϕ − m3)

. (94)

Setting MT = 0 and using (A.5) and (27b), we obtain the following expression:

u(P)
z (r, ϕ, z = 0) = P(1 − ν)

2µπr
. (95)

Regarding now the radial and tangential displacement components, equations
(80) and (81) with MT = 0 give

u(P)
r (r, ϕ, z = 0) = − P

µπ2r

8m−2

m1m2m3

∫ 1

0

1

(1 − ζ 2)1/2
dζ , (96)

and

u(P)
ϕ (r, ϕ, z = 0) = P · cos ϕ · sin ϕ

µπ2r

8m−2

m1m2m3

∫ 1

0

1

(1 − ζ 2)1/2

× PF
(

1

cos2 ϕ − ζ 2

)
dζ, (97)

where m = [2(1 − ν)/(1 − 2ν)]1/2 (see the definition in (27b)). An analytical
evaluation by MATHEMATICATM shows that the integral in (96) gives the value
π/2, whereas the integral in (97) equals zero for all angles ϕ with cos2 ϕ �= 1.
In the case cos2 ϕ = 1, despite the hypersingular character of the integrand at the
upper limit, u(P)

ϕ becomes zero because of the factor sin ϕ. In view of the above,
the final expressions read

u(P)
r (r, ϕ, z = 0) = −P(1 − 2ν)

4µπr
, (98)

u(P)
ϕ (r, ϕ, z = 0) = 0. (99)

Cerruti’s Problem

Equations (64), (A.5), (27b) and MT = 0 provide

u(S)
z (r, ϕ, z = 0) = S cos ϕ

4µπr
(1 − 2ν), (100)
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whereas (86), (87) and MT = 0 lead to the additional results

u(S)
r (r, ϕ, z = 0) = S cos ϕ

2µπr
, (101)

u(S)
ϕ (r, ϕ, z = 0) = −S sin ϕ

2µπr
(1 − ν). (102)

9. Numerical Results and Concluding Remarks

The numerical results are presented in the form of graphs showing the normalized
dimensionless displacements

U(P)
z = u(P)

z µr/P , U(S)
z = u(S)

z µr/S, U(T )
z = u(T )

z µr/T ,

U(P)
r = u(P)

r µr/P , U(P)
ϕ = u(P)

ϕ µr/P , U(S)
r = u(S)

r µr/S and

U(S)
ϕ = u(S)

ϕ µr/S

as functions of the polar angle ϕ or the shear Mach number MT, for a material with
Poisson’s ratio ν = 0.2. All integrals appearing in the results of Sections 6 and 7
were evaluated numerically by MATHEMATICATM.

Figure 8 shows U(P)
z vs. ϕ curves for various load speeds. In the sub-Rayleigh

range (case of MT = 0.8) the displacement is positive and, therefore, is directed

Figure 8. Variation of the normalized vertical displacement U
(P)
z = u

(P )
z µr/P , due to a

normal moving load, with the polar angle ϕ for various load speeds (cases of MT = 0.8,
MT = 0.95, MT = 1.2 and MT = 2.5 – which correspond to sub-Rayleigh, su-
per-Rayleigh/subsonic, transonic and supersonic motion, respectively). The symbols L and
T mark discontinuities associated with longitudinal and transverse (shear) wavefronts, respec-
tively.
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into the half-space. In the subsonic/super-Rayleigh range (case of MT = 0.95),
there is a Cauchy-type discontinuity along the Rayleigh Mach wavefronts at ϕ =
106.47◦ and the displacement is positive in the sector defined by the Rayleigh lines
(behind the load) but negative elsewhere. In the transonic range (case of MT = 1.2),
there is a Cauchy-type discontinuity along the Rayleigh wavefronts at ϕ = 130.61◦
and a slope discontinuity along the shear wavefronts (defined by M2

T sin2 ϕ = 1) at
ϕ = 123.56◦. In the supersonic range (case of MT = 2.5), the displacement suffers
a Cauchy-type discontinuity along the Rayleigh wavefronts at ϕ = 158.63◦ and a
slope discontinuity along the shear wavefronts at ϕ = 156.42◦. In the same range,
the displacement becomes zero along the longitudinal wavefronts at ϕ = 139.22◦.

Figures 9, 10, 11 and 12 show U(S)
z vs. ϕ curves for, respectively, a sub-Rayleigh

speed of the load S (MT = 0.8), a super-Rayleigh/subsonic speed (MT = 0.95), a
transonic speed (MT = 1.2) and a supersonic speed (MT = 2.5). It is of notice in
the super-Rayleigh/subsonic case that U(S)

z is continuous along the Rayleigh lines
at ϕ = 106.47◦ and that the magnitude of U(S)

z is smaller (by a factor of 10, approx-
imately) in the super-Rayleigh case as compared to that in the sub-Rayleigh case.
Also U(S)

z is symmetric w.r.t. the x-axis and is zero along lines at ϕ = π/2, 3π/2.
In the transonic case, U(S)

z experiences a slope discontinuity at the shear Mach
wavefronts and, also, it is negative inside the shear wavefront sector but positive
outside this sector. Finally, Figure 12 shows that U(S)

z in the supersonic case is zero
everywhere except in the two sectors between the longitudinal and shear wavefront
lines.

Figure 9. Variation of the normalized vertical displacement U
(S)
z = u

(S)
z µr/S, due to a

tangential moving load, with the polar angle ϕ for a load speed MT = 0.8.
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Figure 10. Variation of the normalized vertical displacement U
(S)
z = u

(S)
z µr/S, due to a

tangential moving load, with the polar angle ϕ for a load speed MT = 0.95.

Figure 11. Variation of the normalized vertical displacement U
(S)
z = u

(S)
z µr/S, due to a

tangential moving load, with the polar angle ϕ for a load speed MT = 1.2.

Figure 13 depicts the variation of U(T )
z with ϕ for the speed values MT =

0.8 (sub-Rayleigh range) and MT = 0.95 (super-Rayleigh/subsonic range) of the
load T . It is worth noticing that the vertical displacement becomes zero at ϕ = π/2
and ϕ = 3π/2. This can be explained physically since, at these angles, the 3D
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Figure 12. Variation of the normalized vertical displacement U
(S)
z = u

(S)
z µr/S, due to a

tangential moving load, with the polar angle ϕ for a load speed MT = 2.5.

Figure 13. Variation of the normalized vertical displacement U
(T )
z = u

(T )
z µr/T , due to a

tangential moving load having a direction orthogonal to the direction of motion, with the
polar angle ϕ for load speeds MT = 0.8 and MT = 0.95.
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Figure 14. Variation of the normalized radial displacement U
(P)
r = u

(P )
r µr/P , due to a

normal moving load, with the transverse Mach number MT. The discontinuity occurs when
the load speed reaches the Rayleigh wave speed in the medium (V = VR).

Figure 15. Variation of the normalized tangential displacement U
(P)
ϕ = u

(P )
ϕ µr/P , due to a

normal moving load, with the polar angle ϕ for load speeds MT = 0.8 and MT = 0.95.

problem with the T force acting normal to the xz-plane degenerates into a 2D
problem of anti-plane shear deformation in the xz-plane.

Figure 14 shows the variation of U(P)
r with the Mach number MT in the subsonic

range, where U(P)
r is independent of the polar angle ϕ. The radial displacement

is negative (i.e., its direction is towards the point of application of the load) and
becomes infinite as the velocity approaches the Rayleigh wave velocity at VR/VT

∼=
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Figure 16. Variation of the normalized radial displacement U
(S)
r = u

(S)
r µr/S, due to a

tangential moving load, with the polar angle ϕ for load speeds MT = 0.8 and MT = 0.95.

Figure 17. Variation of the normalized tangential displacement U
(S)
ϕ = u

(S)
ϕ µr/S, due to a

tangential moving load, with the polar angle ϕ for MT = 0.8 and MT = 0.95.

0.91. At this speed the displacement is discontinuous. When VR < V,U(P)
r is finite

everywhere and remains continuous across the Rayleigh lines. Figure 15 shows the
variation of U(P)

ϕ with ϕ indicating that this displacement component is continuous
across the Rayleigh lines, the x-axis and the y-axis. U(P)

ϕ is anti-symmetric w.r.t.
the x and y axes. Also, one may observe that the magnitude of U(P)

ϕ is much smaller
in the super-Rayleigh speed (case of MT = 0.95) than the one in the sub-Rayleigh
speed (case of MT = 0.8).
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Figure 16 shows the variation of U(S)
r with ϕ at load velocities MT = 0.8 and

MT = 0.95. No Rayleigh singularity appears and U(S)
r is continuous and bounded

in all directions. Figure 17 depicts U(S)
ϕ vs. ϕ indicating that this displacement

component: (i) is continuous in the entire ϕ range, (ii) is negative in the half-plane
y > 0 and positive in the half-plane y < 0, in the case of sub-Rayleigh speeds
(MT = 0.8), and (iii) suffers a Cauchy-type singularity at the Rayleigh wavefront,
in the case of super-Rayleigh speeds (MT = 0.95).

In closing, we notice that the present results can also be used as Green’s func-
tions to accomplish integral-equation solutions for 3D elastodynamic contact prob-
lems, in the manner employed in, e.g., [1, 38] for simpler 2D problems. Indeed,
relative efforts by the authors are underway.

Appendix A

Following concepts from Rahman and Barber [30], we write the function K(MT),
which is defined in (29b), as

K(MT) = M2
T

[
M6

T − 8M4
T + 8

(
3 − 2m−2

)
M2

T − 16
(
1 − m−2

)]
= M2

T

(
M2

T − m1
)(

M2
T − m2

)(
M2

T − m3
)
, (A.1)

where (m1,m2,m3) are the nontrivial zeros of K(MT). Now, we depart from the
analysis of Rahman and Barber [30] and fully exploit the potentiality of MATHE-
MATICATM as a symbolic algebra program obtaining the following expressions
for these zeros

m1 = 4

3

[
2 + 21/3(5ν − 2)

β(ν)
− 22/3

4(1 − ν)
β(ν)

]
, (A.2)

m2 = 2

3

[
4 − 21/3(1 + i31/2)(5ν − 2)

β(ν)
+ 22/3(1 − i31/2)

4(1 − ν)
β(ν)

]
, (A.3)

m3 = 2

3

[
4 − 21/3(1 − i31/2)(5ν − 2)

β(ν)
+ 22/3(1 + i31/2)

4(1 − ν)
β(ν)

]
, (A.4)

where ν is Poisson’s ratio, i = (−1)1/2,

β(ν) = [
33/2γ (ν) + 56ν3 − 123ν2 + 78ν − 11

]1/3
,

and

γ (ν) = [
(1 − ν)3(32ν3 − 16ν2 + 21ν − 5)

]1/2
.

Further, an inspection on the above functions with MATHEMATICATM and a
graphical representation of the functions m1(ν), Re {m2(ν)} and Re {m3(ν)}, where
Re {·} denotes the real part of a complex function, reveal the following:

(i) The zero m1 is real for all values of ν and coincides with the nontrivial zero
of the Rayleigh function R(MT).
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(ii) The zeros m2 and m3 are also zeros of the function (2 − M2
T)

2 + 4(1 − M2
L)

1/2

× (1 − M2
T)

1/2. They are real in the interval 0 < ν � ν0, where ν0 =
0.2630820648 . . . , and complex conjugate in the interval ν0 < ν < 0.5.
We also notice that ν0 is the real zero of γ (ν).

(iii) The inequalities m1 < 1 < Re {m2} < Re {m3} are valid.
(iv) The inequalities M2

L < M2
T � m2 < m2 < m3 are valid in the subsonic

and transonic speed ranges, if, of course, (m2,m3) are real (i.e., for Poisson’s
ratios in the interval 0 < ν � ν0).

(v) The equality m1m2m3 = 16(1 − m−2) is always valid.

By having available, through (A.1), the factorization forms of K(VT) and R(VT)

permits writing (49) and other analogous equations in the main text of the paper.
This appendix presents also the expansions of the functions (A,B,C,D) in

sums of partial fractions. These are as follows

A(MT) ≡ 4(1 − M2
L)∏3

j=1 (M2
T − mj)

=
3∑

j=1

Aj

(M2
T − mj)

, (A.5)

B(MT) ≡ (2 − M2
T)

2∏3
j=1 (M2

T − mj)
=

3∑
j=1

Bj

(M2
T − mj)

, (A.6)

C(MT) ≡ (8m−2 − 4) + (6 − 8m−2)M2
T − M4

T∏3
j=1 (M2

T − mj)
=

3∑
j=1

Cj

(M2
T − mj)

, (A.7)

D(MT) ≡ 2(2 − M2
T)∏3

j=1 (M2
T − mj)

=
3∑

j=1

Dj

(M2
T − mj)

, (A.8)

where

A1 = 4(1 − m−2m1)

(m1 − m2)(m1 − m3)
, A2 = 4(1 − m−2m2)

(m2 − m1)(m2 − m3)
,

A3 = 4(1 − m−2m3)

(m3 − m1)(m3 − m2)
,

(A.9a,b,c)

B1 = (2 − m1)
2

(m1 − m2)(m1 − m3)
, B2 = (2 − m2)

2

(m2 − m1)(m2 − m3)
,

B3 = (2 − m3)
2

(m3 − m1)(m3 − m2)
,

(A.10a,b,c)

C1 = (8m−2 − 4) + (6 − 8m−2)m1 − m2
1

(m1 − m2)(m1 − m3)
,

C2 = (8m−2 − 4) + (6 − 8m−2)m2 − m2
2

(m2 − m1)(m2 − m3)
,

C3 = (8m−2 − 4) + (6 − 8m−2)m3 − m2
3

(m3 − m1)(m3 − m2)
,

(A.11a,b,c)
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D1 = 2(2 − m1)

(m1 − m2)(m1 − m3)
, D2 = 2(2 − m2)

(m2 − m1)(m2 − m3)
,

D3 = 2(2 − m3)

(m3 − m1)(m3 − m2)
.

(A.12a,b,c)

Appendix B

The solution to the second auxiliary problem described by (14), (16) and (19), i.e.,
the 2D anti-plane shear problem of a moving load, is effected through the use of the
two-sided Laplace transform and exact inversions involving contour integration.
The two-sided Laplace transform pair is written as

Us(p, ω, z) =
∫ +∞

−∞
ũs(q, ω, z) · e−pq dq,

ũs(q, ω, z) = 1

2π i

∫
Br

Us(p, ω, z) · epq dp,

(B.1a,b)

where Br denotes the Bromwich inversion path in the complex p-plane. Operating
now with (B.1a) on (14) gives

d2Us

dz2
+ (

1 − m2c2
x

)
p2Us = 0, (B.2)

where one may discern the following two cases: (i) 1 − m2c2
x > 0 ⇔ |V · cos ω|

< VT , and (ii) 1−m2c2
x < 0 ⇔ |V · cos ω| > VT. The first and second inequalities

define, respectively, the subsonic and supersonic velocity ranges.
The subsonic case is considered first. To facilitate the definition of the perti-

nent branch cuts in the complex p-plane (these branch cuts are needed in order
for us to have a bounded solution as z → ∞), we write (B.2) as (d2Us/dz2) −
(1 − m2c2

x)(ε
2 − p2)Us = 0, where ε is a real positive number such that ε → 0

(see for this standard procedure in, e.g., [39, 40]). In this way, the latter ODE
supplied with the transformed boundary condition (16) has the following (bounded)
solution Us(p, ω, z) = −(S · sin ω/µb) · exp(−bz), where b ≡ b(p) =
(1 − m2c2

x)
1/2(ε2 − p2)1/2 and Re(b) > 0 in the p-plane with cuts along the in-

tervals ε < |Re(p)| < ∞, Im(p) = 0. The transformed solution shows that Us

is an analytic function of p when Re(p) = 0 and, therefore, the inversion can be
effected through the operation

ũs(q, ω, z) = −S sin ω

i2πµ

∫ +i∞

−i∞
e−bz

b
epq dp. (B.3)

By deforming now the original integration path onto a contour that includes
large quarter-circular paths at infinity in the Re(p) < 0 half-plane and straight
paths along the pertinent branch cut, and exploiting Cauchy’s theorem along with
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Jordan’s lemma, we obtain the following result in terms of a real integral in the case
q � 0 (in the other case q � 0, an analogous expression is obtained by deforming
the integration path in the Re(p) > 0 half-plane)

ũs(q, ω, z = 0) = − S sin ω

πµ(1 − m2c2
x)

1/2

∫ ∞

ε

e−pq

(p2 − ε2)1/2
dp,

with q � 0. (B.4)

From entry 3.387.6 in the Table of Gradshteyn and Ryzhik [41] or by using MATHE-
MATICATM, the integral is found to be K0(εq), where K0 is the modified Bessel
function of order zero. K0 behaves as limx→0 K0(x) = − ln |x| (see, e.g., [42]). In
the present case, of course, ε → 0 so that one may write

K0(εq) = − ln
(
ε|q|) = − ln(ε) − ln

(|q|), with ε → 0. (B.5)

But, at this point, it proves useful to recall that ũs(q, ω, z = 0) in (B.4) expresses
displacement. In (B.5), therefore, the spatially independent term ln(ε) can be iden-
tified with a rigid-body displacement and, consequently, be omitted from the final
expression providing the displacement. An extensive discussion of the latter argu-
ment can be found in [40], and here we just mention that the occurrence of ln(ε)
in (B.5) simply confirms the well-known result that the solution of the Neumann
boundary value problem for an elliptic PDE (as is (14) in the subsonic regime) is
unique up to an arbitrary constant.

In view of the above, the solution of the second auxiliary problem in the sub-
sonic range (i.e., |V cos ω| < VT) is given as

ũs(q, ω, z = 0) = S · sin ω

πµ(1 − m2c2
x)

1/2
ln |q|. (B.6)

For the supersonic case next, we find that the general solution of the ODE in
(B.2) has the form

Us(p, ω, z) = L1 exp
[−(m2c2

x − 1)1/2pz
] + L2 exp

[
(m2c2

x − 1)1/2pz
]
,

where (L1, L2) are constants to be determined through enforcement of the bound-
ary conditions. Since by the radiation condition (see e.g., [26]) only backward
running waves (i.e., waves trailing from the moving source) are admitted, the first
term in the aforementioned general solution is rejected because it would result
in disturbances moving ahead of the source. Indeed, one may observe that mul-
tiplying the term L2 exp[(m2c2

x − 1)1/2pz] by the term exp(pq) appearing in the
inverse Laplace transform in (B.1b) gives the solution form L2 exp[iIm(p) · (q +
(m2c2

x − 1)1/2z)], which is consistent with the physical condition that for |V · cos ω|
> VT the medium in front of the source is not disturbed, the term containing
(q − (m2c2

x − 1)1/2z) being rejected from the solution.
In view of the above and the transformed boundary condition, the solution

Us(p, ω, z = 0) is found to be

Us(p, ω, z = 0) = S sin ω

µ(m2c2
x − 1)1/2

1

p
, (B.7)
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whereas its inverse ũs(q, ω, z = 0) is evaluated through standard Tables and has
the form

ũs(q, ω, z = 0) = S sin ω

2µ(m2c2
x − 1)1/2

· sgn(q). (B.8)

Finally, since the relation sgn(q) = 1 − 2H(−q) holds between the signum and
Heaviside functions, the solution of the second auxiliary problem in the supersonic
range (i.e., |V · cos ω| > VT) is given as

ũs(q, ω, z = 0) = − S sin ω

µ(m2c2
x − 1)1/2

· H(−q), (B.9)

where, again, the rigid-body term is omitted.
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